Today: Nov 23, 2024
RU / EN
Last update: Oct 30, 2024
Analysis of Cytotoxic Effects of Medical Gas-Discharge Devices

Analysis of Cytotoxic Effects of Medical Gas-Discharge Devices

Astafyeva K.A., Ivanova I.P.
Key words: gas-discharge technologies; radiation of spark discharge plasma; ultraviolet radiation; Darsonval corona discharge.
2017, volume 9, issue 1, page 115.

Full text

html pdf
1914
2176

The aim of the investigation was to analyze cytotoxic effects of various gas-discharge technologies.

Materials and Methods. The following gas-discharge devices were used in the work: Pilimin series IR-1, IR-10 and Brig — radiation of spark discharge plasma; DBK-9 low-pressure mercury lamp — ultraviolet radiation; Corona device for darsonvalization — silent electric corona discharge. The objects of investigation were erythrocytes of Wistar rats, and lymphoid cells of Pliss lymphosarcoma.

Results. All examined gas-discharge devices were established to possess membranotoxic and cytotoxic effects. The total number of erythrocytes and lymphoid cells diminished, while the number of nonviable cells grew with the increase of exposure time. Erythrocyte membrane was least resistant to the radiation of the spark discharge plasma with 1,500 μs pulse duration and to ultraviolet radiation of the mercury lamp, whereas erythrocytes were less resistant to the radiation by the gas-discharge devices than lymphoid cells. Pliss lymphosarcoma cells appeared to be more sensitive to the action of spark discharge plasma and corona discharge with 1–10 μs pulse duration. Radiation of spark discharge plasma with 150 μs pulse duration exhibited equally membranotoxic and cytotoxic effect.

Conclusion. The results of assessing cytotoxic effect of various gas-discharge devices help to determine the direction of investigations when mechanisms of action of gas-discharge technologies are explored, and to recommend, in particular, a more profound study of such parameter as pulse discharge duration.

  1. Sasai Y., Kondo S., Yamauchi Y., Kuzuya M. Plasma surface modification of polymer substrate for cell adhesion control. J Photopolym Sci Technol 2010; 23(4): 595–598, https://doi.org/10.2494/photopolymer.23.595.
  2. Steinbeck M.J., Chernets N., Zhang J., Kurpad D.S., Fridman G., Fridman A., Freeman T.A. Skeletal cell differentiation is enhanced by atmospheric dielectric barrier discharge plasma treatment. PLoS One 2013; 8(12): e82143, https://doi.org/10.1371/journal.pone.0082143.
  3. Ivanova I.P., Zaslavskaya M.I. Biocydic effect of the spark discharge non-coherent impulse radiation in experiments in vitro and in vivo. Sovremennye tehnologii v medicine 2009; 1: 28–31.
  4. Piskarev I.M., Ivanova I.P., Trofimova S.V. Comparison of chemical effects of UV radiation from spark discharge in air and a low-pressure mercury lamp. High Energy Chemistry 2013; 47(5): 247–250, https://doi.org/10.1134/s0018143913050093.
  5. Ziskin M.C. Millimeter waves: acoustic and electromagnetic. Bioelectromagnetics 2012; 34(1): 3–14, https://doi.org/10.1002/bem.21750.
  6. Ivanova I.P., Prodanets N.V., Spirov G.M. Morphological alterations of internal organs of the rats with transplantable Pliss’ lymphasarcoma exposed to incoherent pulse radiation. Morfologiya; 2004; 4: 52.
  7. Arkhipova Е.V., Ivanova I.P. The effect of non-coherent impulse radiation on functional status of mononuclear cells in experiment. Sovremennye tehnologii v medicine 2013; 5(1): 27–31.
  8. Ivanova I.P., Trofimova S.V., Vedunova М.V., Zhabereva А.S., Bugrova M.L., Piskaryov I.M., Karpel Vel Leitner N. Assessment of cytotoxic effect mechanisms of gas-discharge plasma radiation. Sovremennye tehnologii v medicine 2014; 6(1): 14–22.
  9. Ivanova I.P., Trofimova S.V., Karpel Vel Leitner N., Аristova N.А., Arkhipova Е.V., Burkhina О.Е., Sysoeva V.А., Piskaryov I.M. The analysis of active products of spark discharge plasma radiation determining biological effects in tissues. Sovremennye tehnologii v medicine 2012; 2: 20–30.
  10. Bains G., Patel A.B., Narayanaswami V. Pyrene: a probe to study protein conformation and conformational changes. Molecules 2011; 16(12): 7909–7935, https://doi.org/10.3390/molecules16097909.
  11. Drahota Z., Palenickova E., Endlicher R., Milerova M., Brejchova J., Vosahlikova M., Svoboda P., Kazdova L., Kalous M., Cervinkova Z., Cahova M. Biguanides inhibit complex I, II and IV of rat liver mitochondria and modify their functional properties. Physiol Res 2014; 63(1): 1–11.
  12. Salcedo-Sicilia L., Granell S., Jovic M., Sicart A., Mato E., Johannes L., Balla T., Egea G. βIII spectrin regulates the structural integrity and the secretory protein transport of the Golgi complex. J Biol Chem 2012; 288(4): 2157–2166, https://doi.org/10.1074/jbc.m112.406462.
  13. Dzhuzha D.A. Diagnostic efficacy of positron emission tomography with 18F-fluorodeoxyglucose in oncology. Onkologiya 2010; 12(3): 296–303.
  14. Ibarguren M., López D.J., Escribá P.V. The effect of natural and synthetic fatty acids on membrane structure, microdomain organization, cellular functions and human health. Biochim Biophys Acta 2014; 1838(6): 1518–1528, https://doi.org/10.1016/j.bbamem.2013.12.021.
  15. Loura L.M.S. Lateral distribution of NBD-PC fluorescent lipid analogs in membranes probed by molecular dynamics-assisted analysis of Förster resonance energy transfer (FRET) and fluorescence quenching. Int J Mol Sci 2012; 13(12): 14545–14564, https://doi.org/10.3390/ijms131114545.
  16. Alakhova D.Y., Kabanov A.V. Pluronics and MDR reversal: an update. Mol Pharm 2014; 11(8): 2566–2578, https://doi.org/10.1021/mp500298q.

Astafyeva K.A., Ivanova I.P. Analysis of Cytotoxic Effects of Medical Gas-Discharge Devices. Sovremennye tehnologii v medicine 2017; 9(1): 115, https://doi.org/10.17691/stm2017.9.1.15


Journal in Databases

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg

SCImago Journal & Country Rank