Today: Nov 21, 2024
RU / EN
Last update: Oct 30, 2024
A Novel Approach to Alveolar Bone Complex Defects 3D Reconstruction

A Novel Approach to Alveolar Bone Complex Defects 3D Reconstruction

Muraev A.A., Gazhva Y.V., Ivashkevich S.G., Riabova V.M., Korotkova N.L., Semyonova Y.A., Metsuku I.N., Faizullin R.L., Ivanov S.Y.
Key words: alveolar bone reconstruction; guided bone regeneration; dental membranes for bone reconstruction; computer-assisted 3D planning; alveolar bone defects.
2017, volume 9, issue 2, page 37.

Full text

html pdf
4263
2303

The aim of the investigation was to assess the efficacy of the 3D reconstruction of the alveolar bone by means of guided bone regeneration based on computer-assisted 3D planning using a resorbable dental membrane.

Materials and Methods. 35 practically healthy patients without a marked concomitant somatic pathology with a diagnosis of “partial teeth loss complicated by alveolar bone atrophy” took part in the study. All patients underwent reconstructive operations to eliminate the defects and restore the alveolar bone volume using guided bone regeneration procedure and resorbable dental membranes. Planning and operations were performed according to the developed unified protocol including computer-assisted 3D operation planning and fabrication of intraoperative templates for dental membranes using 3D prototyping.

Results. The developed method of computer-assisted 3D operation planning and fabrication of intraoperative templates for dental membranes using 3D prototyping has proved to be effective as it reduces the time of operative intervention, excludes the risk of forming a smaller membrane of inadequate shape, gives the required bone volume.

Conclusion. The proposed method of computer-assisted 3D operation planning and fabrication of intraoperative templates for dental membranes using 3D prototyping allows surgeons to improve the precision of the guided bone regeneration operations, to diminish the intraoperative time of membrane adaptation, and avoid the possibility of its mispositioning. At the same time, application of the resorbable dental membrane increases the efficacy of the 3D alveolar bone reconstruction.

  1. Paraskevich V.L. Vozmozhnosti primeneniya vnutrikostnoy implantatsii pri znachitel’noy atrofii chelyustey. V kn.: Materialy I mezhdunarodnoy konferentsii “Aktual’nye voprosy stomatologicheskoy implantatsii” [Possibilities of applying intraosteal implantation in significant jaws atrophy. In: Materials of I International Conference “Actual issues of dental implantation”]. Minsk; 1998; p. 15–23.
  2. Ivanov S.Iu., Iamurkova N.F., Muraev A.A. Defect elimination of mandible alveolar part by sandwich plastics. Stomatologiia 2010; 89(2): 42–47.
  3. Bassett C.A.L. Biologic significance of piezoelectricity. Calcif Tissue Res 1967; 1(1): 252–272, https://doi.org/10.1007/bf02008098.
  4. Boyne P.J., James R.A. Grafting of the maxillary sinus floor with autogenous marrow and bone. J Oral Surg 1980; 38(8): 613–616.
  5. Bol’shaya sovetskaya entsiklopediya. T. 30 [Great Soviet encyclopedia. Vol. 30]. Gl. red. Prokhorov A.M. [Prokhorov A.M. (editor)]. Moscow: Sovetskaya entsiklopediya; 1969–1978.
  6. Ivanov S.Yu., Yamurkova N.F., Muraev A.A., Khasianov I.T. Evaluating of bone augmentation procedures before dental implants installation. Rossiyskiy vestnik dental’noy implantologii 2013; 2(28): 34–39.
  7. Iamurkova N.F., Ivanov S.Iu., Muraev A.A. “Veneer” plastics of jaw alveolar bone before dental implant placement. Stomatologiia 2010; 89(2): 36–41.
  8. Panin A.M., Malinetskii G.G., Tsitsiashvili A.M., Anastos A. Mathematical planning of sandwich-plasty by osseous-muco-periosteal advancement flap. Stomatologiia 2013; 92(3): 63–64.
  9. Khoury F., Hanser T. Mandibular bone block harvesting from the retromolar region: a 10-year prospective clinical study. Int J Oral Maxillofac Implants 2015; 30(3): 688–697, https://doi.org/10.11607/jomi.4117.
  10. Lomakin M.V., Filatova A.S., Soloshchanskii I.I. Guided bone regeneration in the reconstruction of the alveolar bone volume for dental implantation. Rossiyskaya stomatologiya 2011; 4(5): 15–18.
  11. Andreeva N.V., Bonartsev A.P., Zharkova I.I., Makhina T.K., Myshkina V.L., Kharitonova E.P., Voinova V.V., mouse mesenchymal stem cells on poly-3-hydroxybutyrate scaffolds. Bull Exp Biol Med 2015; 159(4): 567–571, https://doi.org/10.1007/s10517-015-3015-5.
  12. Bonartsev A.P., Zharkova I.I., Yakovlev S.G., Myshkina V.L., Makhina T.K., Zernov A.L., Kudryashova K.S., Feofanov A.V., Akulina E.A., Ivanova E.V., Zhuikov V.A., Andreeva N.V., Voinova V.V., Bessonov I.V., Kopitsyna M.V., Morozov A.S., Bonartseva G.A., Shaitan K.V., Kirpichnikov M.P. 3D-scaffolds from poly(3-hydroxybutyrate)poly(ethylene glycol) copolymer for tissue engineering. J Biomater Tissue Eng 2016; 6(1): 42–52, https://doi.org/10.1166/jbt.2016.1414.
  13. Muraev A.A., Bonartsev A.P., Gazhva Yu.V., Riabova V.M., Volkov A.V., Zharkova I.I., Stamboliev I.A., Kuznetsova E.S., Zhuikov V.A., Myshkina V.L., Mahina T.K., Bonartseva G.A., Yakovlev S.G., Kudryashova K.S., Voinova V.V., Mironov A.A., Shaitan K.V., Gazhva S.I., Ivanov S.Yu. Development and preclinical studies of orthotopic bone implants based on a hybrid construction from poly(3-hydroxybutyrate) and sodium alginate. Sovremennye tehnologii v medicine 2016; 8(4): 42–50, https://doi.org/10.17691/stm2016.8.4.06.
  14. Gazhva J.V., Bonartsev А.P., Mukhametshin R.F., Zharkova I.I., Andreeva N.V., Makhina T.К., Myshkina V.L., Bespalova A.E., Zernov А.L., Ryabova V.M., Ivanova E.V., Bonartseva G.А., Mironov А.А., Shaitan K.V., Volkov А.V., Muraev А.А., Ivanov S.Y. In vivo and in vitro development and study of osteoplastic material based on hydroxyapatite, poly-3-hydroxybutyrate and sodium alginate composition. Sovremennye tehnologii v medicine 2014; 6(1): 6–13.
  15. Livshits V.A., Bonartsev A.P., Iordanskii A.L., Ivanov E.A., Makhina T.A., Myshkina V.L., Bonartseva G.A. Microspheres based on poly(3-hydroxy)butyrate for prolonged drug release. Polymer Science Series B 2009; 51(7–8): 256–263, https://doi.org/10.1134/s1560090409070082.
  16. Bonartsev A.P., Bonartseva G.A., Makhina T.K., Myshkina V.L., Luchinina E.S., Livshits V.A., Boskhomdzhiev A.P., Markin V.S., Iordanskii A.L. New poly(3-hydroxybutyrate)-based systems for controlled release of dipyridamole and indomethacin. Appl Biochem Microbiol 2006; 42(6): 625–630, https://doi.org/10.1134/s0003683806060159.
  17. Ivanov S.Yu., Bonartsev A.P., Gazhva Yu.V., Zharkova I.I., Mukhametshin R.F., Mahina T.K., Myshkina V.L., Bonartseva G.A., Voinova V.V., Andreeva N.V., Akulina E.A., Kharitonova E.S., Shaitan K.V., Muraev A.A. Development and preclinical studies of insulating membranes based on poly-3-hydroxybutyrate-co-3-hydroxyvalerate for guided bone regeneration. Biomeditsinskaya khimiya 2015; 61(6): 717–723.
  18. Bonartsev A.P., Yakovlev S.G., Zharkova I.I., Boskhomdzhiev A.P., Bagrov D.V., Myshkina V.L., Makhina T.K., Kharitonova E.P., Samsonova O.V., Feofanov A.V., Voinova V.V., Zernov A.L., Efremov Y.M., Bonartseva G.A., Shaitan K.V., Kirpichnikov M.P. Cell attachment on poly(3-hydroxybutyrate)-poly(ethylene glycol) copolymer produced by Azotobacter chroococcum 7B. BMC Biochem 2013; 14(1): 12, https://doi.org/10.1186/1471-2091-14-12.
  19. Bonartsev A.P., Boskhomodgiev A.P., Iordanskii A.L., Bonartseva G.A., Rebrov A.V., Makhina T.K., Myshkina V.L., Yakovlev S.A., Filatova E.A., Ivanov E.A., Bagrov D.V., Zaikov G.E. Hydrolytic degradation of poly(3-hydroxybutyrate), polylactide and their derivatives: kinetics, crystallinity, and surface morphology. Molecular Crystals and Liquid Crystals 2012; 556(1): 288–300, https://doi.org/10.1080/15421406.2012.635982.
  20. Boskhomdzhiev A.P., Bonartsev A.P., Makhina T.K., Myshkina V.L., Ivanov E.A., Bagrov D.V., Filatova E.V., Iordanskii A.L., Bonartseva G.A. Biodegradation kinetics of poly(3-hydroxybutyrate)-based biopolymer systems. Biochemistry (Moscow) Supplement Series B: Biomedical Chemistry 2010; 4(2): 177–183, https://doi.org/10.1134/s1990750810020083.
  21. Myshkina V.L., Ivanov E.A., Nikolaeva D.A., Makhina T.K., Bonartsev A.P., Filatova E.V., Ruzhitsky A.O., Bonartseva G.A. Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer by Azotobacter chroococcum strain 7B. Appl Biochem Microbiol 2010; 46(3): 289–296, https://doi.org/10.1134/s0003683810030075.
  22. Bonartsev A.P., Iordanskii A.L., Bonartseva G.A., Zaikov G.E. Biodegradation and medical application of microbial poly (3-hydroxybutyrate). Journal of the Balkan Tribological Association 2008; 14(3): 359–395.
  23. Myshkina V.L., Nikolaeva D.A., Makhina T.K., Bonartsev A.P., Bonartseva G.A. Effect of growth conditions on the molecular weight of poly-3-hydroxybutyrate produced by Azotobacter chroococcum 7B. Appl Biochem Microbiol 2008; 44(5): 482–486, https://doi.org/10.1134/s0003683808050050.
  24. Bonartsev A.P., Bonartseva G.A., Shaitan K.V., Kirpichnikov M.P. Poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate)-based biopolymer systems. Biochemistry (Moscow) Supplement Series B: Biomedical Chemistry 2011; 5(1): 10–21, https://doi.org/10.1134/s1990750811010045.
  25. Salmi M., Paloheimo K.-S., Tuomi J., Wolff J., Mäkitie A. Accuracy of medical models made by additive manufacturing (rapid manufacturing). Journal of Cranio-Maxillofacial Surgery 2013; 41(7): 603–609, https://doi.org/10.1016/j.jcms.2012.11.041.
  26. Lizio G., Corinaldesi G., Marchetti C. Alveolar ridge reconstruction with titanium mesh: a three-dimensional evaluation of factors affecting bone augmentation. Int J Oral Maxillofac Implants 2014; 29(6): 1354–1363, https://doi.org/10.11607/jomi.3417.
Muraev A.A., Gazhva Y.V., Ivashkevich S.G., Riabova V.M., Korotkova N.L., Semyonova Y.A., Metsuku I.N., Faizullin R.L., Ivanov S.Y. A Novel Approach to Alveolar Bone Complex Defects 3D Reconstruction. Sovremennye tehnologii v medicine 2017; 9(2): 37, https://doi.org/10.17691/stm2017.9.2.04


Journal in Databases

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg

SCImago Journal & Country Rank