Today: Dec 26, 2024
RU / EN
Last update: Oct 30, 2024
The Concept of a Device for the Redo Transcatheter Mitral Valve Implantation

The Concept of a Device for the Redo Transcatheter Mitral Valve Implantation

Zhuravleva I.Y., Nushtaev D.V., Timchenko T.V., Trebushat D.V., Mayorov А.P., Zheleznev S.I., Demidov D.P., Bogachev-Prokophiev А.V.
Key words: transcatheter valve implantation; bioprosthesis; mitral valve; “valve-to-valve” technique.
2017, volume 9, issue 3, page 7.

Full text

html pdf
2703
5699

The aim of the investigation is the development of the heart valve prosthesis and transcatheter delivery system for the replacement of a failed mitral biological prosthesis.

Materials and Methods. Calculations and construction of three-dimensional models and drawings have been performed in the Computer-Aided Design environment CATIA V5 (Dassault Systèmes, France). The process of the product shaping has been simulated by the terminal element analysis in Abaqus Software (Dassault Systèmes, France). Prototypes of the stents have been made of nitinol tubes by Angioline Interventional Device company (Novosibirsk, Russia) using a laser cutting technique with outer diameter of 7.0 mm and wall thickness 0.5 mm (Vascotube GmbH, Germany). Bioprosthetic leaflets and the cover have been cut using a laser station Melas-Cardio (Institute of Laser Physics, Siberian Branch, Russian Academy of Sciences, Novosibirsk). The valve assemblage has been hand-made using surgical sutures 8/0.

Results. The self-expanding biological prosthesis design is based on the anatomy of the left heart, considering the presence of previously implanted bioprosthesis in the mitral position. The nitinol stent of cellular structure consists of a cuff, the body and the outlet part. It is round-shaped that corresponds to the shape of a standard suture bioprostheses. One-third of the cuff adjacent to the mitral-aortic contact area forms a 70-degree angle to the mitral annulus plane. In the outlet part there are three hook retainers of the previously implanted bioprosthetic leaflets. For prosthesis repositioning during implantation there are two-way (on the cuff and on hook retainers) retainers and complementary latches in the central catheter of the delivery system, they providing the connection of the valve with the delivery system in both transapical and transatrial access. The valve is provided with radiopaque markers to facilitate the positioning. Valve leaflets and the cover have been made of porcine pericardium treated with epoxy compound. The cover coats the inner surface of the stent cuff and a part of the body.

Conclusion. We developed the prototype of a device for the redo transcatheter mitral valve implantation. Further preclinical testing is necessary to evaluate a safety of the medical device.

  1. Cribier A., Durand E., Eltchaninoff H. Patient selection for TAVI in 2014: is it justified to treat low- or intermediate-risk patients? The cardiologist’s view. EuroIntervention 2014; 10(U): U16–U21, https://doi.org/10.4244/eijv10sua3.
  2. Preston-Maher G.L., Torii R., Burriesci G. A technical review of minimally invasive mitral valve replacements. Cardiovasc Eng Technol 2015; 6(2): 174–184, https://doi.org/10.1007/s13239-014-0203-9.
  3. Dolgov V.Y., Ovcharenko E.A., Klyshnikov K.Y., Sizova I.N., Kudryavtseva Y.A., Barbarash L.S. Automated method to analyze geometry and topology of mitral valve fibrous ring. Sovremennye tehnologii v medicine 2016; 8(2): 22–30, https://doi.org/10.17691/stm2016.8.2.03.
  4. Young M., Erdemir A., Stucke S., Klatte R., Davis B., Navia J.L. Simulation based design and evaluation of a transcatheter mitral heart valve frame. J Med Device 2012; 6(3): 031005, https://doi.org/10.1115/1.4007182.
  5. Zamorano J.L., González-Gómez A., Lancellotti P. Mitral valve anatomy: implications for transcatheter mitral valve interventions. EuroIntervention 2014; 10(U): U106–U111, https://doi.org/10.4244/eijv10sua15.
  6. Gallo M., Dvir D., Demertzis S., Pedrazzini G., Berdajs D., Ferrari E. Transcatheter valve-in-valve implantation for degenerated bioprosthetic aortic and mitral valves. Expert Rev Med Devices 2016; 13(8): 749–758, https://doi.org/10.1080/17434440.2016.1207521.
  7. Auricchio F., Taylor R.L. Shape-memory alloys: modelling and numerical simulations of the finite-strain superelastic behavior. Comput Methods Appl Mech Eng 1997; 143(1–2): 175–194, https://doi.org/10.1016/s0045-7825(96)01147-4.
  8. Ovcharenko E.A., Klyshnikov K.U., Yuzhalin A.E., Savrasov G.V., Kokov A.N., Batranin A.V., Ganyukov V.I., Kudryavtseva Y.A. Modeling of transcatheter aortic valve replacement: patient specific vs general approaches based on finite element analysis. Comput Biol Med 2016; 69: 29–36, https://doi.org/10.1016/j.compbiomed.2015.12.001.
  9. Ovcharenko E.A., Klyshnikov K.Y., Nushtaev D.V., Savrasov G.V., Barbarash L.S. Investigation of the tubular leaflet geometry of an aortic heart valve prosthesis by finite-element analysis. Biophysics 2015; 60(5): 827–834, https://doi.org/10.1134/s0006350915050152.
  10. Ovcharenko E.A., Klyshnikov K.Y., Glushkova T.V., Nyshtaev D.V., Kudryavtseva Y.A., Savrasov G.V. Xenopericardial graft selection for valve apparatus of transcatheter heart valve bioprosthesis. Biomed Eng 2016; 49(5): 253–257, https://doi.org/10.1007/s10527-016-9543-0.
  11. Boudjemline Y. New insights in minimally invasive valve replacement: description of a cooperative approach for the off-pump replacement of mitral valves. Eur Heart J 2005; 26(19): 2013–2017, https://doi.org/10.1093/eurheartj/ehi307.
  12. Walther T., Falk V., Dewey T., Kempfert J., Emrich F., Pfannmüller B., Bröske P., Borger M.A., Schuler G., Mack M., Mohr F.W. Valve-in-a-valve concept for transcatheter minimally invasive repeat xenograft implantation. J Am Coll Cardiol 2007; 50(1): 56–60, https://doi.org/10.1016/j.jacc.2007.03.030.
  13. Webb J.G., Wood D.A., Ye J., Gurvitch R., Masson J.B., Rodés-Cabau J., Osten M., Horlick E., Wendler O., Dumont E., Carere R.G., Wijesinghe N., Nietlispach F., Johnson M., Thompson C.R., Moss R., Leipsic J., Munt B., Lichtenstein S.V., Cheung A. Transcatheter valve-in-valve implantation for failed bioprosthetic heart valves. Circulation 2010; 121(16): 1848–1857, https://doi.org/10.1161/circulationaha.109.924613.
  14. Simonato M., Webb J., Kornowski R., Vahanian A., Frerker C., Nissen H., Bleiziffer S., Duncan A., Rodés-Cabau J., Attizzani G.F., Horlick E., Latib A., Bekeredjian R., Barbanti M., Lefevre T., Cerillo A., Hernández J.M., Bruschi G., Spargias K., Iadanza A., Brecker S., Palma J.H., Finkelstein A., Abdel-Wahab M., Lemos P., Petronio A.S., Champagnac D., Sinning J.M., Salizzoni S., Napodano M., Fiorina C., Marzocchi A., Leon M., Dvir D. Transcatheter replacement of failed bioprosthetic valves: large multicenter assessment of the effect of implantation depth on hemodynamics after aortic valve-in-valve. Circ Cardiovasc Interv 2016; 9(6): e003651, https://doi.org/10.1161/circinterventions.115.003651.
  15. Paradis J.-M., Del Trigo M., Puri R., Rodés-Cabau J. Transcatheter valve-in-valve and valve-in-ring for treating aortic and mitral surgical prosthetic dysfunction. J Am Coll Cardiol 2015; 66(18): 2019–2037, https://doi.org/10.1016/j.jacc.2015.09.015.
  16. Dvir D., Webb J. Mitral valve-in-valve and valve-in-ring: technical aspects and procedural outcomes. EuroIntervention 2016; 12(Y): Y93–Y96, https://doi.org/10.4244/eijv12sya25.
  17. Baumgarten H., Squiers J.J., Arsalan M., John M., Dimaio M.J. Defining the clinical need and indications: who are the right patients for transcatheter mitral valve replacement. J Cardiovasc Surg (Torino) 2016; 57(3): 352–359.
  18. Lane R.M., Nyuli C.A. Transcatheter mitral valve prosthesis. US patent 8,579,964. 2013.
  19. Chau M., Patterson M., Yi S., Geist S., Oba T. Prosthetic valve for replacing mitral valve. US patent 8,449,599. 2013.
  20. Pichugin V.F., Pustovalova A.A., Konishchev M.E., Khlusov I.A., Ivanova N.M., Zhilei S., Gutor S.S. In-vitro dissolution and structural and electrokinetic characteristics of titanium-oxynitride coatings formed via reactive magnetron sputtering. J Synch Investig 2016; 10(2): 282–291, https://doi.org/10.1134/s1027451016020166.
  21. Coylewright M., Cabalka A.K., Malouf J.A., Geske J.B., Pollak P.M., Suri R.M., Rihal C.S. Percutaneous mitral valve replacement using a transvenous, transseptal approach. JACC Cardiovasc Interv 2015; 8(6): 850–857, https://doi.org/10.1016/j.jcin.2015.01.028.
  22. Ramlawi B., Gammie J.S. Mitral valve surgery: current minimally invasive and transcatheter options. Methodist Debakey Cardiovasc J 2016; 12(1): 20–26, https://doi.org/10.14797/mdcj-12-1-20.
  23. Bruschi G., Barosi A., Colombo P., Botta L., Oreglia J., De Marco F., Paino R., Klugmann S., Martinelli L. Direct transatrial transcatheter SAPIEN valve implantation through right minithoracotomy in a degenerated mitral bioprosthetic valve. Ann Thorac Surg 2012; 93(5): 1708–1710, https://doi.org/10.1016/j.athoracsur.2011.08.084.
Zhuravleva I.Y., Nushtaev D.V., Timchenko T.V., Trebushat D.V., Mayorov А.P., Zheleznev S.I., Demidov D.P., Bogachev-Prokophiev А.V. The Concept of a Device for the Redo Transcatheter Mitral Valve Implantation. Sovremennye tehnologii v medicine 2017; 9(3): 7, https://doi.org/10.17691/stm2017.9.3.01


Journal in Databases

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg

SCImago Journal & Country Rank