Alternative Contrast Mechanism in Optical Coherence Tomography: Temporal Speckle Synchronization Effects
We propose an alternative optical coherence tomography (OCT) contrast mechanism based on analysis of speckle temporal synchronization using B-mode OCT structural images. We show that the changes in synchronized speckle intensities with time may be used to distinguish between different tissue types, thus providing a novel and potentially useful contrast for OCT imaging. The developed methodology is tested in scattering flow phantoms, and in vivo on cervical cancer tumour grown within a mouse dorsal skin window chamber model. Derived speckle synchronization metric is compared with autocorrelation function analysis to demonstrate its different nature. The phantom and pre-clinical in vivo results suggest that the proposed synchronization approach is sensitive to tissue type/pathology, potentially enabling tumour quantitative evaluation and its delineation from surrounding normal tissues.
- Fujimoto J.G., Pitris C., Boppart S.A., Brezinski M.E. Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy. Neoplasia 2000; 2(1–2): 9–25, https://doi.org/10.1038/sj.neo.7900071.
- Schmitt J.M., Xiang S.H., Yung K.M. speckle in optical coherence tomography. J Biomed Opt 1999; 4(1): 95–105, https://doi.org/10.1117/1.429925.
- Gossage K.W., Tkaczyk T.S., Rodriguez J.J., Barton J.K. Texture analysis of optical coherence tomography images: feasibility for tissue classification. J Biomed Opt 2003; 8(3): 570–575, https://doi.org/10.1117/1.1577575.
- Farhat G., Yang V.X.D., Czarnota G.J., Kolios M.C. Detecting cell death with optical coherence tomography and envelope statistics. J Biomed Opt 2011; 16(2): 026017, https://doi.org/10.1117/1.3544543.
- Farhat G., Mariampillai A., Yang V.X.D., Czarnota G.J., Kolios M.C. Detecting apoptosis using dynamic light scattering with optical coherence tomography. J Biomed Opt 2011; 16(7): 070505, https://doi.org/10.1117/1.3600770.
- Hillman T.R., Adie S.G., Seemann V., Armstrong J.J., Jacques S.L., Sampson D.D. Correlation of static speckle with sample properties in optical coherence tomography. Opt Lett 2006; 31(2): 190–192, https://doi.org/10.1364/ol.31.000190.
- Van der Meer F.J., Faber D.J., Aalders M.C.G., Poot A.A., Vermes I., van Leeuwen T.G. Apoptosis- and necrosis-induced changes in light attenuation measured by optical coherence tomography. Lasers Med Sci 2010; 25(2): 259–267, https://doi.org/10.1007/s10103-009-0723-y.
- Sugita M., Weatherbee A., Bizheva K., Popov I., Vitkin A. Analysis of scattering statistics and governing distribution functions in optical coherence tomography. Biomed Opt Express 2016; 7(7): 2551–2551, https://doi.org/10.1364/boe.7.002551.
- Sugita M., Brown R.A., Popov I., Vitkin A. K-distribution three-dimensional mapping of biological tissues in optical coherence tomography. J Biophotonics 2017; e201700055, https://doi.org/10.1002/jbio.201700055.
A.A., Conroy L., Farhat G., DaCosta R.S., Flueraru C., Vitkin I.A. Texture analysis of optical coherence tomography speckle for characterizing biological tissues in vivo. Opt Lett 2013; 38(8): 1280–1282, https://doi.org/10.1364/ol.38.001280.Lindenmaier - Gossage K.W., Smith C.M., Kanter E.M., Hariri L.P., Stone A.L., Rodriguez J.J, Williams S.K., Barton J.K. Texture analysis of speckle in optical coherence tomography images of tissue phantoms. Phys Med Biol 2006; 51(6): 1563–1575, https://doi.org/10.1088/0031-9155/51/6/014.
- Flueraru C., Popescu D.P., Mao Y., Chang S., Sowa M.G. Added soft tissue contrast using signal attenuation and the fractal dimension for optical coherence tomography images of porcine arterial tissue. Phys Med Biol 2010; 55(8): 2317–2331, https://doi.org/10.1088/0031-9155/55/8/013.
- Sullivan A.C., Hunt J.P., Oldenburg A.L. Fractal analysis for classification of breast carcinoma in optical coherence tomography. J Biomed Opt 2011; 16(6): 066010, https://doi.org/10.1117/1.3590746.
- Mariampillai A., Standish B.A., Moriyama E.H., Khurana M., Munce N.R., Leung M.K., Jiang J., Cable A., Wilson B.C., Vitkin I.A., Yang V.X. Speckle variance detection of microvasculature using swept-source optical coherence tomography. Opt Lett 2008; 33(13): 1530–1532, https://doi.org/10.1364/ol.33.001530.
- Mariampillai A., Leung M.K.K., Jarvi M., Standish B.A., Lee K., Wilson B.C., Vitkin A., Yang V.X. Optimized speckle variance OCT imaging of microvasculature. Opt Lett 2010; 35(8): 1257–1259, https://doi.org/10.1364/ol.35.001257.
- Conroy L., DaCosta R.S., Vitkin I.A. Quantifying tissue microvasculature with speckle variance optical coherence tomography. Opt Lett 2012; 37(15): 3180–3182, https://doi.org/10.1364/ol.37.003180.
- Farhat G., Mariampillai A., Lee K.K.C., Yang V.X.D., Czarnota G.J., Kolios M.C. Measuring intracellular motion using dynamic light scattering with optical coherence tomography in a mouse tumor model. Proc. SPIE 8230, Biomedical Applications of Light Scattering VI 2012; 823002, https://doi.org/10.1117/12.908536.
- Huygens C. Horologium oscillatorium sive de motu pendulorum ad horologia aptato demonstrationes geometricae. Paris: F. Muguet; 1673.
- Pikovsky A., Rosenblum M., Kurths J. Synchronization: a universal concept in non-linear sciences. Cambridge University Press; 2001; https://doi.org/10.1017/cbo9780511755743.
- Pecora L.M., Carroll T.L. Synchronization in chaotic systems. Phys Rev Lett 1990; 64(8): 821–824, https://doi.org/10.1103/physrevlett.64.821.
- Balanov A., Janson N., Postonov D., Sosnovtseva O. Synchronization: from simple to complex. Springer-Verlag Berlin Heidelberg; 2009.
- Rosenblum M., Pikovsky A., Kurths J., Schäfer C., Tass P.A. Chapter 9. Phase synchronization: from theory to data analysis. In: Handbook of biological physics. Elsevier; 2001; p. 279–321, https://doi.org/10.1016/s1383-8121(01)80012-9.
- Bracic M., McClintock P.V.E., Stefanovska A. Characteristic frequencies of the human blood distribution system. In: McClintock P.V.E., Broomhead D.S., Mullin T., Luchinskaya E.A. AIP Conference Proceedings, Stochastic and Chaotic Dynamics in the Lakes. Melville, NY; 2000; p. 146–153, https://doi.org/10.1063/1.1302378.
- Brazhe A.R., Marsh D.J., Holstein-Rathlou N.-H., Sosnovtseva O. Synchronized renal blood flow dynamics mapped with wavelet analysis of laser speckle flowmetry data. PLoS One 2014; 9(9): e105879, https://doi.org/10.1371/journal.pone.0105879.
- Buzsáki G. Rhythms of the brain. New York, NY: Oxford University Press; 2006, https://doi.org/10.1093/acprof:oso/9780195301069.001.0001.
- Anagnostopoulos C.E., Holcomb W.G., Glenn W.W.L. Pacemaker synchronization. Science 1966; 153(3744): 1636–1637, https://doi.org/10.1126/science.153.3744.1636.
- Mirowski M. Standby automatic defibrillator. An approach to prevention of sudden coronary death. Arch Intern Med 1970; 126(1): 158–161, https://doi.org/10.1001/archinte.1970.00310070160014.
- Shabunin A.V., Demidov V.V., Astakhov V.V., Anishchenko V.S. The volume of information as a measure of the chaos synchronization. Technical Physics Letters 2001; 27(6): 476–479, https://doi.org/10.1134/1.1383830.
- Shabunin A., Demidov V., Astakhov V., Anishchenko V. Information theoretic approach to quantify complete and phase synchronization of chaos. Phys Rev E Stat Nonlin Soft Matter Phys 2002; (5 Pt 2): 056215, https://doi.org/10.1103/physreve.65.056215.
- Lehrman M.,
A.B., White R.B. Symbolic analysis of chaotic signals and turbulent fluctuations. Phys Rev Lett 1997; 78(1): 54–57, https://doi.org/10.1103/physrevlett.78.54.Rechester - Paluš M, Komárek V, Hrnčíř Z, Štěrbová K. Synchronization as adjustment of information rates: Detection from bivariate time series. Phys Rev E Stat Nonlin Soft Matter Phys 2001; 63(4 Pt 2): 046211, https://doi.org/10.1103/physreve.63.046211.
- Shannon C.E. A mathematical theory of communication. Bell System Technical Journal 1948; 27(3): 379–423.
- Cover T.M., Thomas J.A. Elements of information theory. New York: John Wiley & Sons, Inc.; 1991, https://doi.org/10.1002/0471200611.
- Pearson T., Shultz L.D., Miller D., King M., Laning J., Fodor W., Cuthbert A., Burzenski L., Gott B., Lyons B., Foreman O., Rossini A.A., Greiner D.L. Non-obese diabetic-recombination activating gene-1 (NOD-Rag1 null) interleukin (IL)-2 receptor common gamma chain (IL2r gamma null) null mice: a radioresistant model for human
lymphohaematopoietic engraftment. Clin Exp Immunol 2008; 154(2): 270–284, https://doi.org/10.1111/j.1365-2249.2008.03753.x. - Leung M.K.K. A platform to monitor
tumour cellular and vascular response to radiation therapy by optical coherence tomography and fluorescence microscopy in-vivo. MSc thesis. Medical Biophysics, University of Toronto; 2010. - Passos D., Hebden J.C., Pinto P.N., Guerra R. Tissue phantom for optical diagnostics based on a suspension of microspheres with a fractal size distribution. J Biomed Opt 2005; 10(6): 064036, https://doi.org/10.1117/1.2139971.
- Weiss N., van Leeuwen T.G., Kalkman J. Simultaneous and localized measurement of diffusion and flow using optical coherence tomography. Opt Express 2015; 23(3): 3448, https://doi.org/10.1364/oe.23.003448.
- Popov I., Weatherbee A.S., Vitkin I.A. Dynamic light scattering arising from flowing Brownian particles: analytical model in optical coherence tomography conditions. J Biomed Opt 2014; 19(12): 127004, https://doi.org/10.1117/1.jbo.19.12.127004.
- Ullah H., Ahmed E., Ikram M. Monitoring of glucose levels in mouse blood with noninvasive optical methods. Laser Physics 2014; 24(2): 025601, https://doi.org/10.1088/1054-660x/24/2/025601.
- Demidov V., Maeda A., Sugita M., Madge V., Sadanand S., Flueraru C., Vitkin I.A. Preclinical longitudinal imaging of tumor microvascular radiobiological response with functional optical coherence tomography. Sci Rep 2018; 8(1): 38, https://doi.org/10.1038/s41598-017-18635-w.
- Ullah H., Hussain F., Ikram M. Optical coherence tomography for glucose monitoring in blood. Applied Physics B 2015; 120(2): 355–366, https://doi.org/10.1007/s00340-015-6144-7.