Today: Jan 22, 2025
RU / EN
Last update: Dec 27, 2024
Near-Infrared Fluorescence from Nanodiamond for Multimodal Bioimaging

Near-Infrared Fluorescence from Nanodiamond for Multimodal Bioimaging

Lin Y.-C., Tsai L.-W., Perevedentseva E., Karmenyan A., Cheng C.-L.
Key words: nanodiamond; Ni-related defects; near-infrared emission; color center; fluorescence; bioimaging.
2018, volume 10, issue 1, page 49.

Full text

html pdf
2294
1818

Nanodiamonds (ND) are emerging as a promising candidate for the multimodal bioimaging due to their optical and spectroscopic properties. Fluorescence properties of ND are determined by defects and admixtures in the crystal lattice. The most developed bioapplications of the ND fluorescence are using nitrogen-vacancy centers. However they emit fluorescence in the visible region which overlaps with the autofluorescence from biological objects.

The aim of the study was to analyze the fluorescence of nickel-related color center in nanodiamond with emission in the near-infrared range (883–885 nm) in terms of its applications for bioimaging using one-photon and two-photon excitations.

Materials and Methods. Synthetic diamond powders (Kay Diamond, USA) of sizes in the range from 100 nm to 2.5 μm were carboxylated and characterized with Raman and photoluminescence spectroscopy at one-photon and two-photon excitation. Baby hamster kidney cells were treated with 500 nm ND for 8 h and subjected to microscopic investigations using laser confocal fluorescence scanning microscopy and photoluminescence mapping.

Results. The effects of the particles size, temperature and excitation conditions on the fluorescence of Ni-related center are studied. Variability of the emission with sizes (as well as with excitation wavelength and temperature) gives the possibility to select the most suitable nano- or microparticles to use as a fluorescent probe. The two-photon excitation of Ni centers in nano- and microdiamond are demonstrated. The possibility to use Ni color center for bioimaging is presented using confocal fluorescence imaging and fluorescence mapping of distribution of 500 nm ND in baby hamster kidney cells. The emission of Ni-related center (885 nm) showing no photobleaching and no damage to the baby hamster kidney cells and the location of ND is clearly observed relatively the cells.

Conclusion. Fluorescence from Ni-related color center at one-photon and two-photon excitation can be an option in biological imaging to avoid cell autofluorescence and to shift the excitation to lower energy laser excitation which is safer and transparent for biological objects.

  1. Turcheniuk K., Mochalin V.N. Biomedical applications of nanodiamond (review). Nanotechnology 2017; 28(25): 252001, https://doi.org/10.1088/1361-6528/aa6ae4.
  2. Perevedentseva E., Lin Y.C., Jani M., Cheng C.L. Biomedical applications of nanodiamonds in imaging and therapy. Nanomedicine 2013; 8(12): 2041–2060, https://doi.org/10.2217/nnm.13.183.
  3. Aharonovich I., Castelletto S., Simpson D.A., Su C.-H., Greentree A.D., Prawer S. Diamond-based single-photon emitters. Rep Prog Phys 2011; 74(7): 076501, https://doi.org/10.1088/0034-4885/74/7/076501.
  4. Wrachtrup J., Jelezko F. Processing quantum information in diamond. J Phys Condens Matter 2006; 18(21): S807–S824, https://doi.org/10.1088/0953-8984/18/21/s08 .
  5. Pezzagna S., Rogalla D., Wildanger D., Meijer J., Zaitsev A. Creation and nature of optical centres in diamond for single-photon emission — overview and critical remarks. New J Phys 2011; 13(3): 035024, https://doi.org/10.1088/1367-2630/13/3/035024.
  6. Vlasov I.I., Shiryaev A.A., Rendler T., Steinert S., Lee S.Y., Antonov D., Vörös M., Jelezko F., Fisenko A.V., Semjonova L.F., Biskupek J., Kaiser U., Lebedev O.I., Sildos I., Hemmer P.R., Konov V.I., Gali A., Wrachtrup J. Molecular-sized fluorescent nanodiamonds. Nat Nanotechnol 2014; 9(1): 54–58, https://doi.org/10.1038/nnano.2013.255.
  7. Jelezko F., Wrachtrup J. Single defect centres in diamond: a review. Phys Stat Sol A 2006; 203(13): 3207–3225, https://doi.org/10.1002/pssa.200671403.
  8. Balasubramanian G., Lazariev A., Arumugam S.R., Duan D.W. Nitrogen-vacancy color center in diamond-emerging nanoscale applications in bioimaging and biosensing. Curr Opin Chem Biol 2014; 20: 69–77, https://doi.org/10.1016/j.cbpa.2014.04.014.
  9. Fu C.C., Lee H.Y., Chen K., Lim T.S., Wu H.Y., Lin P.K., Wei P.K., Tsao P.H., Chang H.C., Fann W. Characterization and application of single fluorescent nanodiamonds as cellular biomarkers. Proc Natl Acad Sci USA 2007; 104(3): 727–732, https://doi.org/10.1073/pnas.0605409104.
  10. Thiering G., Londero E., Gali A. Single nickel-related defects in molecular-sized nanodiamonds for multicolor bioimaging: an ab initio study. Nanoscale 2014; 6(20): 12018–12025, https://doi.org/10.1039/c4nr03112a.
  11. Rabeau J.R., Chin Y.L., Prawer S., Jelezko F., Gaebel T., Wrachtrup J. Fabrication of single nickel-nitrogen defects in diamond by chemical vapor deposition. Appl Phys Lett 2005; 86(13): 131926, https://doi.org/10.1063/1.1896088.
  12. Aharonovich I., Zhou C., Stacey A., Orwa J., Castelletto S., Simpson D., Greentree A.D., Treussart F., Roch J.F., Prawer S. Enhanced single-photon emission in the near infrared from a diamond color center. Phys Rev B 2009; 79(23): 235316, https://doi.org/10.1103/physrevb.79.235316.
  13. Orwa J.O., Aharonovich I., Jelezko F., Balasubramanian G., Balog P., Markham M., Twitchen D.J., Greentree A.D., Prawer S. Nickel related optical centres in diamond created by ion implantation. J Appl Phys 2010; 107(9): 093512, https://doi.org/10.1063/1.3357374.
  14. Hui Y.Y., Zhang B., Chang Y.C., Chang C.C., Chang H.C., Hsu J.H., Chang K., Chang F.H. Two-photon fluorescence correlation spectroscopy of lipid-encapsulated fluorescent nanodiamonds in living cells. Opt Express 2010; 18(6): 5896–5905, https://doi.org/10.1364/oe.18.005896.
  15. Denk W., Piston D.W., Webb W.W. Multi-photon molecular excitation in laser-scanning microscopy. In: Pawley J.B. Handbook of biological confocal microscopy. Springer US; 2006; p. 535–549, https://doi.org/10.1007/978-0-387-45524-2_28.
  16. Nazare M.H., Neves A.J., Davies G. Optical studies of the 1.40-eV Ni center in diamond. Phys Rev B Condens Matter 1991; 43(17): 14196–14205, https://doi.org/10.1103/physrevb.43.14196.
  17. Iakoubovskii K., Davies G. Vibronic effects in the 1.4−e Voptical center in diamond. Phys Rev B 2004; 70(24): 245206, https://doi.org/10.1103/physrevb.70.245206.
  18. Chung P.-H., Perevedentseva E., Tu J.-S., Chang C.C., Cheng C.-L. Spectroscopic study of bio-functionalized nanodiamonds. Diam Relat Mater 2006; 15(4–8): 622–625, https://doi.org/10.1016/j.diamond.2005.11.019.
  19. Davies G., Lawson S.C., Collins A.I., Mainwood A., Sharp S.J. Vacancy-related centers in diamond. Phys Rev B Condens Matter 1992; 46(20): 13157–13170, https://doi.org/10.1103/physrevb.46.13157.
  20. Collins A.T. The characterisation of point defects in diamond by luminescence spectroscopy. Diam Relat Mater 1992; 1(5–6): 457–469, https://doi.org/10.1016/0925-9635(92)90146-f.
  21. Larico R., Machado W.V.M., Justo J.F., Assali L.V.C. Microscopic structure of nickel-dopant centers in diamond. Braz J Phys 2006; 36(2a): 267–269, https://doi.org/10.1590/s0103-97332006000300009.
  22. Nadolinny V.A., Yelisseyev A.P., Yuryeva O.P., Feygelson B.N. EPR study of the transformations in nickel containing centres at heated synthetic diamonds. Appl Mag Reson 1997; 12(4): 543–554, https://doi.org/10.1007/bf03164134.
  23. Kanda H., Watanabe K. Distribution of nickel related luminescence centers in HPHT diamond. Diam Relat Mater 1999; 8(8–9): 1463–1469, https://doi.org/10.1016/s0925-9635(99)00070-9.
  24. Zaitsev A.M. Optical properties of diamond: a data handbook. Springer-Verlag, Berlin Heidelberg; 2001, https://doi.org/10.1007/978-3-662-04548-0.
  25. Nadolinny V.A., Yelisseyev A.P., Baker J.M., Newton M.E., Twitchen D.J., Lawson S.C., Yuryeva O.P., Feigelson B.N. A study of 13C hyperfine structure in the EPR of nickel-nitrogen-containing centres in diamond and correlation with their optical properties. J Phys Condens Matter 1999; 11(38): 7357–7376, https://doi.org/10.1088/0953-8984/11/38/314.
  26. Gucsik A., Nishido H., Ninagawa K., Ott U., Tsuchiyama A., Kayama M., Simonia I., Boudou J.-P. Cathodoluminescence microscopy and spectroscopy of micro-and nanodiamonds: an implication for laboratory astrophysics. Microsc Microanal 2012; 18(6): 1285–1291, https://doi.org/10.1017/s143192761201330x.
  27. Collins A.T., Spear P.M. The 1.40 eV and 2.56 eV centres in synthetic diamond. J Phys Condens Matter 1983; 16(5): 963–973, https://doi.org/10.1088/0022-3719/16/5/023.
  28. Kuo Y., Hsu T.Y., Wu Y.C., Chang H.C. Fluorescent nanodiamond as a probe for the intercellular transport of proteins in vivo. Biomaterials 2013; 34(33): 8352–8360, https://doi.org/10.1016/j.biomaterials.2013.07.043.

Lin Y.-C., Tsai L.-W., Perevedentseva E., Karmenyan A., Cheng C.-L. Near-Infrared Fluorescence from Nanodiamond for Multimodal Bioimaging. Sovremennye tehnologii v medicine 2018; 10(1): 49, https://doi.org/10.17691/stm2018.10.1.06


Journal in Databases

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg

SCImago Journal & Country Rank