Today: Jan 22, 2025
RU / EN
Last update: Dec 27, 2024
Real-Time Tracking of Yb<sup>3+</sup>, Tm<sup>3+</sup> Doped NaYF</span><sub style="background-color: initial;">4</sub><span style="background-color: initial;"> Nanoparticles in Living Cancer Cells

Real-Time Tracking of Yb3+, Tm3+ Doped NaYF4 Nanoparticles in Living Cancer Cells

Kostyuk A.B., Guryev E.L., Vorotnov A.D., Sencha L.M., Peskova N.N., Sokolova E.A., Liang L., Vodeneev V.A., Balalaeva I.V., Zvyagin A.V.
Key words: upconversion nanoparticles; single-particle tracking; wide-field microscopy.
2018, volume 10, issue 1, page 57.

Full text

html pdf
1919
2474

The aim of the study was to demonstrate the possibility of real-time tracking of polyethylenimine-coated NaYF4:Yb,Tm upconversion nanoparticles (UCNPs) in living cancer cells using wide-field microscopy technique.

Materials and Methods. Human breast adenocarcinoma SK-BR-3 cells and Yb3+, Tm3+ doped NaYF4 nanoparticles with anti-Stokes photoluminescence were used in the study. The nanoparticles were visualized using wide-field microscope with excitation at 975 nm and signal detection in 420–842 spectral range. The analysis of the displacement of UCNPs was performed by fitting the point spread function of the photoluminescent spots corresponding to UCNP location by the Gaussian function, and calculation of mean square displacement.

Results. UCNPs were rapidly internalized by SK-BR-3 cells and retained in the cells for at least 12 h. Two types of the particles motion were registered: (i) isotropic random spatial fluctuations with relatively small amplitudes and low rate of displacement, and (ii) flick and directional movements with rates up to 1.2 µm/s and total displacement up to tens of microns. The registered types of motion can be attributed to diffusion in local area and intracellular transport of nanoparticles encapsulated in vesicles, respectively.

Conclusion. The demonstrated tracking of UCNPs in human breast adenocarcinoma cells showed that Yb3+, Tm3+ doped NaYF4 nanoparticles are an advanced agent for dynamic studies of intracellular processes. The implemented scheme for UCNPs tracking provides long-term observation with preservation of cell viability for at least several hours. In total, almost complete absence of cell autofluorescence and UCNPs photobleaching, low invasiveness, fast rate of image acquisition allow us to consider the proposed approach as useful for a variety of tasks in biomedical research.

  1. Kusumi A., Tsunoyama T.A., Hirosawa K.M., Kasai R.S., Fujiwara T.K. Tracking single molecules at work in living cells. Nat Chem Biol 2014; 10(7): 524–532, https://doi.org/10.1038/nchembio.1558.
  2. Pinaud F., Clarke S., Sittner A., Dahan M. Probing cellular events, one quantum dot at a time. Nat Methods 2010; 7(4): 275–285, https://doi.org/10.1038/nmeth.1444.
  3. Gerion D., Pinaud F., Williams S.C., Parak W.J., Zanchet D., Weiss S., Alivisatos A.P. Synthesis and properties of biocompatible water-soluble silica-coated CdSe/ZnS semiconductor quantum dots. J Phys Chem B 2001; 105(37): 8861–8871, https://doi.org/10.1021/jp0105488.
  4. Parak W.J., Boudreau R., Le Gros M., Gerion D., Zanchet D., Micheel C.M., Williams S.C., Alivisatos A.P., Larabell C. Cell motility and metastatic potential studies based on quantum dot imaging of phagokinetic tracks. Adv Mater 2002; 14(12): 882–885, https://doi.org/10.1002/1521-4095(20020618)14:12882::aid-adma8823.0.co;2-y.
  5. Dahan M., Levi S., Luccardini C., Rostaing P., Riveau B., Triller A. Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking. Science 2003; 302(5644): 442–445, https://doi.org/10.1126/science.1088525.
  6. Lidke D.S., Nagy P., Heintzmann R., Arndt-Jovin D.J., Post J.N., Grecco H.E., Jares-Erijman E.A., Jovin T.M. Quantum dot ligands provide new insights into erbB/HER receptor-mediated signal transduction. Nat Biotechnol 2004; 22(2): 198–203, https://doi.org/10.1038/nbt929.
  7. Yao J., Larson D.R., Vishwasrao H.D., Zipfel W.R., Webb W.W. Blinking and nonradiant dark fraction of water-soluble quantum dots in aqueous solution. Proc Natl Acad Sci USA 2005; 102(40): 14284–14289, https://doi.org/10.1073/pnas.0506523102.
  8. Nirmal M., Dabbousi B.O., Bawendi M.G., Macklin J.J., Trautman J.K., Harris T.D., Brus L.E. Fluorescence intermittency in single cadmium selenide nanocrystals. Nature 1996; 383(6603): 802–804, https://doi.org/10.1038/383802a0.
  9. Chen N., He Y., Su Y.Y., Li X.M., Huang Q., Wang H.F., Zhang X.Z., Tai R.Z., Fan C.H. The cytotoxicity of cadmium-based quantum dots. Biomaterials 2012; 33(5): 1238–1244, https://doi.org/10.1016/j.biomaterials.2011.10.070.
  10. Zvyagin A.V., Sreenivasan V.K.A., Goldys E.M., Panchenko V.Y., Deyev S.M. Photoluminescent hybrid inorganic-protein nanostructures for imaging and sensing in vivo and in vitro. Smart Materials Series 2015; p. 245–284, https://doi.org/10.1039/9781782622109-00245.
  11. Generalova A.N., Rocheva V.V., Nechaev A.V., Khochenkov D.A., Sholina N.V., Semchishen A., Zubov V.P., Koroleva A.V., Chichkov B.N., Khaydukov E.V. PEG-modified upconversion nanoparticles for in vivo optical imaging of tumors. RSC Advances 2016; 6(36): 30089–30097, https://doi.org/10.1039/c5ra25304g.
  12. Deng M.L., Ma Y.X., Huang S., Hu G.F., Wang L.Y. Monodisperse upconversion NaYF4 nanocrystals: syntheses and bioapplications. Nano Research 2011; 4(7): 685–694, https://doi.org/10.1007/s12274-011-0124-y.
  13. Park Y.I., Kim J.H., Lee K.T., Jeon K.-S., Na H.B., Yu J.H., Kim H.M., Lee N., Choi S.H., Baik S.I., Kim H., Park S.P., Park B.J., Kim Y.W., Lee S.H., Yoon S.Y., Song I.C., Moon W.K., Suh Y.D., Hyeon T. Nonblinking and nonbleaching upconverting nanoparticles as an optical imaging nanoprobe and T1 magnetic resonance imaging contrast agent. Adv Mater 2009; 21(44): 4467–4471, https://doi.org/10.1002/adma.200901356.
  14. Guller A.E., Generalova A.N., Petersen E.V., Nechaev A.V., Trusova I.A., Landyshev N.N., Nadort A., Grebenik E.A., Deyev S.M., Shekhter A.B., Zvyagin A.V. Cytotoxicity and non-specific cellular uptake of bare and surface-modified upconversion nanoparticles in human skin cells. Nano Research 2015; 8(5): 1546–1562, https://doi.org/10.1007/s12274-014-0641-6 .
  15. Vedunova M.V., Mishchenko T.A., Mitroshina E.V., Ponomareva N.V., Yudintsev A.V., Generalova A.N., Deyev S.M., Mukhina I.V., Semyanov A.V., Zvyagin A.V. Cytotoxic effects of upconversion nanoparticles in primary hippocampal cultures. RSC Advances 2016; 6(40): 33656–33665, https://doi.org/10.1039/c6ra01272h.
  16. Grebenik E.A., Kostyuk A.B., Deyev S.M. Upconversion nanoparticles and their hybrid assemblies for biomedical applications. Russian Chemical Reviews 2016; 85(12): 1277–1296, https://doi.org/10.1070/rcr4663.
  17. Sreenivasan V.K.A., Zvyagin A.V., Goldys E.M. Luminescent nanoparticles and their applications in the life sciences. J Phys Condens Matter 2013; 25(19): 194101, https://doi.org/10.1088/0953-8984/25/19/194101.
  18. Bonnet J., Burton J., Kardos K., Vail T., Niedbala R.S., Tanke H.J. Detection of cell and tissue surface antigens using up-converting phosphors: a new reporter technology. Anal Biochem 1999; 267(1): 30–36, https://doi.org/10.1006/abio.1998.2965.
  19. Nam S.H., Bae Y.M., Park Y.I., Kim J.H., Kim H.M., Choi J.S., Lee K.T., Hyeon T., Suh Y.D. Long-term real-time tracking of lanthanide ion doped upconverting nanoparticles in living cells. Angew Chem Int Ed Engl 2011; 50(27): 6093–6097, https://doi.org/10.1002/ange.201007979.
  20. Jo H.L., Song Y.H., Park J., Jo E.-J., Goh Y., Shin K., Kim M.-G., Lee K.T. Fast and background-free three-dimensional (3D) live-cell imaging with lanthanide-doped upconverting nanoparticles. Nanoscale 2015; 7(46): 19397–19402, https://doi.org/10.1039/c5nr05875a.
  21. Zhao J.B., Jin D.Y., Schartner E.P., Lu Y.Q., Liu Y.J., Zvyagin A.V., Zhang L.X., Dawes J.M., Xi P., Piper J.A., Goldys E.M., Monro T.M. Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence. Nat Nanotechnol 2013; 8(10): 729–734, https://doi.org/10.1038/nnano.2013.171.
  22. Michalet X. Mean square displacement analysis of single-particle trajectories with localization error: Brownian motion in an isotropic medium. Physical Review E 2010; 82(4): 041914, https://doi.org/10.1103/physreve.82.041914.
  23. Ma N.N., Ma C., Li C.Y., Wang T., Tang Y.J., Wang H.Y., Mou X.B., Chen Z., He N.Y. Influence of nanoparticle shape, size, and surface functionalization on cellular uptake. J Nanosci Nanotechnol 2013; 13(10): 6485–6498, https://doi.org/10.1166/jnn.2013.7525.
  24. Conner S.D., Schmid S.L. Regulated portals of entry into the cell. Nature 2003; 422(6927): 37–44, https://doi.org/10.1038/nature01451.
  25. Wen L., Zheng Z.H., Liu A.A., Lv C., Zhang L.J., Ao J., Zhang Z.L., Wang H.Z., Lin Y., Pang D.W. Tracking single baculovirus retrograde transportation in host cell via quantum dot-labeling of virus internal component. J Nanobiotechnology 2017; 15(1): 37, https://doi.org/10.1186/s12951-017-0270-9.
  26. Alberts B., Johnson A., Lewis J., Raff M., Roberts K., Walter P. Molecular biology of the cell. New York: Garland Science; 2008.
Kostyuk A.B., Guryev E.L., Vorotnov A.D., Sencha L.M., Peskova N.N., Sokolova E.A., Liang L., Vodeneev V.A., Balalaeva I.V., Zvyagin A.V. Real-Time Tracking of Yb3+, Tm3+ Doped NaYF4 Nanoparticles in Living Cancer Cells. Sovremennye tehnologii v medicine 2018; 10(1): 57, https://doi.org/10.17691/stm2018.10.1.07


Journal in Databases

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg

SCImago Journal & Country Rank