Today: Dec 22, 2024
RU / EN
Last update: Oct 30, 2024
Field Potentials Recording in the Brain Tissue as a New Criterion for Determination of Glial Tumors Boundaries

Field Potentials Recording in the Brain Tissue as a New Criterion for Determination of Glial Tumors Boundaries

Mishchenko M.A., Lebedeva A.V., Mishchenko Т.А., Yashin K.S., Lepekhina L.S., Astafyeva K.A., Ivanova I.P., Vedunova М.V., Medyanik I.A., Kazantsev V.B.
Key words: glioma; astrocyte; postsynaptic field potential; tumor boundary; intraoperative diagnosis.
2018, volume 10, issue 3, page 32.

Full text

html pdf
2614
1706

The aim of the study was to evaluate the electrophysiological activities of tumor and peritumoral tissues in an experimental glioblastoma model and rationalize their use for determining the tumor boundaries.

Materials and Methods. Following methods were used in this study: extracellular electrophysiological activity (field postsynaptic potentials) registration; astrocytic glutamate currents patch-clamp registration; magneto-resonant imaging; surgical techniques in vivo. The experiments were performed using cell cultures (primary murine astrocyte culture and constant cell line cultures of rat glioma cells 2211), acute murine hippocampal slices, and rats with transplanted malignant glioma 101.8.

Results. A number of electrophysiological parameters of neurons and glial cells were evaluated using cell cultures, acute hippocampal slices, and the rat brain as a whole. Field postsynaptic potentials in the brain tissue differed between the non-injured areas and the zone of glioma development. No field potentials detected in the tumoral area, indicating the lack of excitability in the tumor cells.

Conclusion. Field potentials recorded in the brain tissue in vivo can be used as a novel criterion for determining the glial brain tumors boundaries.

  1. Mahboob S.O., Eljamel M. Intraoperative image-guided surgery in neuro-oncology with specific focus on high-grade gliomas. Future Oncol 2017; 13(26): 2349–2361, https://doi.org/10.2217/fon-2017-0195.
  2. Cohen A.L., Colman H. Glioma biology and molecular markers. Cancer Treat Res 2015; 163: 15–30, https://doi.org/10.1007/978-3-319-12048-5_2.
  3. Smolin A.V., Bekyashev A.H., Kobyakov G.L., Sharabura T.M., Mufazalov F.F., Kanischeva N.V., Bumagina V.O. First results of the Russian multicenter epidemiology project on the malignant gliomas. Sovremennaya onkologiya 2014; 16(2): 50–55.
  4. de Paula L.B., Primo F.L., Tedesco A.C. Nanomedicine associated with photodynamic therapy for glioblastoma treatment. Biophys Rev 2017; 9(5): 761–773, https://doi.org/10.1007/s12551-017-0293-3.
  5. Eljamel M.S., Mahboob S.O. The effectiveness and cost-effectiveness of intraoperative imaging in high-grade glioma resection; a comparative review of intraoperative ALA, fluorescein, ultrasound and MRI. Photodiagnosis Photodyn Ther 2016; 16: 35–43, https://doi.org/10.1016/j.pdpdt.2016.07.012.
  6. Absalyamova O.V., Anikeeva O.Yu., Golanov A.V., Kobyakov G.L., Konovalov A.N., Kornienko V.N., Krivoshapkin A.L., Loshakov V.A., Olyushin V.E., Potapov A.A., Ryzhova M.V., Tanyashin S.V., Trunin Yu.Yu., Ulitin A.Yu., Shishkina L.V. Klinicheskie rekomendatsii po lecheniyu pervichnykh opukholey tsentralnoy nervnoy sistemy [Clinical guidelines for the treatment of primary central nervous system tumors]. Nizhny Novgorod; 2013.
  7. Reitman Z.J., Winkler F., Elia A.E.H. New directions in the treatment of glioblastoma. Semin Neurol 2018; 38(1): 50–61, https://doi.org/10.1055/s-0038-1623534.
  8. Ulitin A.Yu., Matsko D.E., Olyushin V.E. Neyroepitelialnye opukholi golovnogo mozga [Neuroepithelial brain tumors]. Saint Petersburg: Izd-vo FGBU “RNKHI im. prof. A.L. Polenova”; 2014.
  9. Anokhina Yu.E., Gaidar B.V., Martynov B.V., Svistov D.V., Papayan G.V., Grigorievsky D.I. Prognostic significance of surgery volume under fluorescent intraoperative diagnostic applications in patients with malignant brain gliomas. Vestnik Rossijskoj voenno-medicinskoj akademii 2014; 1(45): 19–24.
  10. Sanai N., Chang S., Berger M.S. Low-grade gliomas in adults: a review. J Neurosurg 2011; 115(5): 948–965, https://doi.org/10.3171/2011.7.jns10238.
  11. Kuhnt D., Becker A., Ganslandt O., Bauer M., Buchfelder M., Nimsky C. Correlation of the extent of tumor volume resection and patient survival in surgery of glioblastoma multiforme with high-field intraoperative MRI guidance. Neuro Oncol 2011; 13(12): 1339–1348, https://doi.org/10.1093/neuonc/nor133.
  12. Robert S.M., Sontheimer H. Glutamate transporters in the biology of malignant gliomas. Cell Mol Life Sci 2014; 71(10): 1839–1854, https://doi.org/10.1007/s00018-013-1521-z.
  13. Khalansky A.S., Kondakova L.I. Transplanted rat glioma 101.8. I. Biological characteristics. Klinicheskaya i eksperimentalnaya morfologiya 2013; 4(8): 63–69.
  14. Lebedeva A.V., Dembitskaya Y.V., Pimashkin A.S., Zhuravleva Z.D., Shishkova E.A., Semyanov A.V. The role of energy substrates in astrocyte calcium activity of rat hippocampus in early postnatal ontogenesis. Sovremennye tehnologii v medicine 2015; 7(3): 14–19, https://doi.org/10.17691/stm2015.7.3.02.
  15. Lebedeva A., Plata A., Nosova O., Tyurikova O., Semyanov A. Activity-dependent changes in transporter and potassium currents in hippocampal astrocytes. Brain Res Bull 2018; 136: 37–43, https://doi.org/10.1016/j.brainresbull.2017.08.015.
  16. Sofroniew M.V., Vinters H.V. Astrocytes: biology and pathology. Acta Neuropathol 2010; 119(1): 7–35, https://doi.org/10.1007/s00401-009-0619-8.
  17. Vogelbaum M.A. Does extent of resection of a glioblastoma matter? Clin Neurosurg 2012; 59: 79–81, https://doi.org/10.1227/neu.0b013e31826b2e75.
  18. Li P., Qian R., Niu C., Fu X. Impact of intraoperative MRI-guided resection on resection and survival in patient with gliomas: a meta-analysis. Curr Med Res Opin 2017; 33(4): 621–630, https://doi.org/10.1080/03007995.2016.1275935.
  19. Scherer M., Jungk C., Younsi A., Kickingereder P., Müller S., Unterberg A. Factors triggering an additional resection and determining residual tumor volume on intraoperative MRI: analysis from a prospective single-center registry of supratentorial gliomas. Neurosurg Focus 2016; 40(3): E4, https://doi.org/10.3171/2015.11.focus15542.
  20. Kubben P.L., Scholtes F., Schijns O.E., Ter Laak-Poort M.P., Teernstra O.P., Kessels A.G., van Overbeeke J.J., Martin D.H., van Santbrink H. Intraoperative magnetic resonance imaging versus standard neuronavigation for the neurosurgical treatment of glioblastoma: a randomized controlled trial. Surg Neurol Int 2014; 5: 70, https://doi.org/10.4103/2152-7806.132572.
  21. Senft C., Bink A., Franz K., Vatter H., Gasser T., Seifert V. Intraoperative MRI guidance and extent of resection in glioma surgery: a randomised, controlled trial. Lancet Oncol 2011; 12(11): 997–1003, https://doi.org/10.1016/s1470-2045(11)70196-6.
  22. Enchev Y., Bozinov O., Miller D., Tirakotai W., Heinze S., Benes L., Bertalanffy H., Sure U. Image-guided ultrasonography for recurrent cystic gliomas. Acta Neurochir (Wien) 2006; 148(10): 1053–1063, https://doi.org/10.1007/s00701-006-0858-6.
  23. Cheng L.G., He W., Zhang H.X., Song Q., Ning B., Li H.Z., He Y., Lin S. Intraoperative contrast enhanced ultrasound evaluates the grade of glioma. Biomed Res Int 2016; 2016: 2643862, https://doi.org/10.1155/2016/2643862.
  24. Prada F., Mattei L., Del Bene M., Aiani L., Saini M., Casali C., Filippini A., Legnani F.G., Perin A., Saladino A., Vetrano I.G., Solbiati L., Martegani A., DiMeco F. Intraoperative cerebral glioma characterization with contrast enhanced ultrasound. Biomed Res Int 2014; 2014: 484261, https://doi.org/10.1155/2014/484261.
  25. Wirtz C.R., Albert F.K., Schwaderer M., Heuer C., Staubert A., Tronnier V.M., Knauth M., Kunze S. The benefit of neuronavigation for neurosurgery analyzed by its impact on glioblastoma surgery. Neurol Res 2000; 22(4): 354–360, https://doi.org/10.1080/01616412.2000.11740684.
  26. Tursynov N., Grigolashvili M., Kauynbekova S., Grigolashvili S. Evaluating the efficacy of neuronavigation in surgical treatment of glial tumors. Georgian Med News 2017; 262: 14–20.
  27. Gerard I.J., Kersten-Oertel M., Petrecca K., Sirhan D., Hall J.A., Collins D.L. Brain shift in neuronavigation of brain tumors: a review. Med Image Anal 2017; 35: 403–420, https://doi.org/10.1016/j.media.2016.08.007.
  28. Suero Molina E., Schipmann S., Stummer W. Maximizing safe resections: the roles of 5-aminolevulinic acid and intraoperative MR imaging in glioma surgery-review of the literature. Neurosurg Rev 2017, https://doi.org/10.1007/s10143-017-0907-z.
  29. Xie Y., Thom M., Ebner M., Wykes V., Desjardins A., Miserocchi A., Ourselin S., McEvoy A.W., Vercauteren T. Wide-field spectrally resolved quantitative fluorescence imaging system: toward neurosurgical guidance in glioma resection. J Biomed Opt 2017; 22(11): 1–14, https://doi.org/10.1117/1.jbo.22.11.116006.
  30. Eljamel S. 5-ALA fluorescence image guided resection of glioblastoma multiforme: a meta-analysis of the literature. Int J Mol Sci 2015; 16(5): 10443–10456, https://doi.org/10.3390/ijms160510443.
  31. Acerbi F., Cavallo C., Schebesch K.M., Akçakaya M.O., de Laurentis C., Hamamcioglu M.K., Broggi M., Brawanski A., Falco J., Cordella R., Ferroli P., Kiris T., Höhne J. Fluorescein-guided resection of intramedullary spinal cord tumors: results from a preliminary, multicentric, retrospective study. World Neurosurg 2017; 108: 603–609, https://doi.org/10.1016/j.wneu.2017.09.061.
  32. Acerbi F., Broggi M., Eoli M., Anghileri E., Cavallo C., Boffano C., Cordella R., Cuppini L., Pollo B., Schiariti M., Visintini S., Orsi C., La Corte E., Broggi G., Ferroli P. Is fluorescein-guided technique able to help in resection of high-grade gliomas? Neurosurg Focus 2014; 36(2): E5, https://doi.org/10.3171/2013.11.focus13487.
  33. Barone D.G., Lawrie T.A., Hart M.G. Image guided surgery for the resection of brain tumours. Cochrane Database Syst Rev 2014; 1: CD009685, https://doi.org/10.1002/14651858.cd009685.pub2.
  34. Li Y., Rey-Dios R., Roberts D.W., Valdés P.A., Cohen-Gadol A.A. Intraoperative fluorescence-guided resection of high-grade gliomas: a comparison of the present techniques and evolution of future strategies. World Neurosurg 2014; 82(1–2): 175–185, https://doi.org/10.1016/j.wneu.2013.06.014.
  35. Jenkinson M.D., Barone D.G., Bryant A., Vale L., Bulbeck H., Lawrie T.A., Hart M.G., Watts C. Intraoperative imaging technology to maximise extent of resection for glioma. Cochrane Database Syst Rev 2018; 1: CD012788, https://doi.org/10.1002/14651858.cd012788.pub2.
  36. Goriainov S.A., Potapov A.A., Pitskhelauri D.I., Kobiakov G.L., Okhlopkov V.A., Gavrilov A.G., Shurkhai V.A., Zhukov V.Iu., Shishkina L.V., Loshchenov V.B., Savel’eva T.A., Kuz’min S.G., Chumakova A.P., Spallone A. Intraoperative fluorescence diagnostics upon recurrent operations for brain gliomas. Voprosy neyrokhirurgii im. N.N. Burdenko 2014; 78(2): 22–31.
  37. Tyurikova O., Dembitskaya Y., Yashin K., Mishchenko M., Vedunova M., Medyanik I., Kazantsev V. Perspectives in intraoperative diagnostics of human gliomas. Comput Math Methods Med 2015; 2015: 1–9, https://doi.org/10.1155/2015/479014.
  38. Banc A., Stan C., Florian I.S. Optical coherence tomography as a marker of vision in children with optic pathway gliomas. Childs Nerv Syst 2018; 34(1): 51–60, https://doi.org/10.1007/s00381-017-3578-8.
  39. Garzon-Muvdi T., Kut C., Li X., Chaichana K.L. Intraoperative imaging techniques for glioma surgery. Future Oncol 2017; 13(19): 1731–1745, https://doi.org/10.2217/fon-2017-0092.
  40. Gempt J., Bette S., Ryang Y.M., Buchmann N., Peschke P., Pyka T., Wester H.J., Förster S., Meyer B., Ringel F. 18F-fluoro-ethyl-tyrosine positron emission tomography for grading and estimation of prognosis in patients with intracranial gliomas. Eur J Radiol 2015; 84(5): 955–962, https://doi.org/10.1016/j.ejrad.2015.01.022.
  41. Zehri A.H., Ramey W., Georges J.F., Mooney M.A., Martirosyan N.L., Preul M.C., Nakaji P. Neurosurgical confocal endomicroscopy: a review of contrast agents, confocal systems, and future imaging modalities. Surg Neurol Int 2014; 5(1): 60, https://doi.org/10.4103/2152-7806.131638.
  42. Kiseleva E.B., Yashin K.S., Moiseev A.A., Snopova L.B., Gelikonov G.V., Medyanik I.A., Kravets L.Ya., Karyakin N.N., Vitkin I.A., Gladkova N.D. Quantitative cross-polarization optical coherence tomography detection of infiltrative tumor margin in a rat glioma model: a pilot study. Sovremennye tehnologii v medicine 2018; 10(1): 6, https://doi.org/10.17691/stm2018.10.1.01.
Mishchenko M.A., Lebedeva A.V., Mishchenko Т.А., Yashin K.S., Lepekhina L.S., Astafyeva K.A., Ivanova I.P., Vedunova М.V., Medyanik I.A., Kazantsev V.B. Field Potentials Recording in the Brain Tissue as a New Criterion for Determination of Glial Tumors Boundaries. Sovremennye tehnologii v medicine 2018; 10(3): 32, https://doi.org/10.17691/stm2018.10.3.4


Journal in Databases

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg

SCImago Journal & Country Rank