Today: Jan 21, 2025
RU / EN
Last update: Dec 27, 2024
Identification of Novel Mutations Controlling Cerebral Cortex Malformations Caused by ENU-Induced Mutagenesis in the Mouse

Identification of Novel Mutations Controlling Cerebral Cortex Malformations Caused by ENU-Induced Mutagenesis in the Mouse

Borisova Е.V., Epifanova E.A., Tutukova S.A., Belousova I.I., Zhidkova N.M., Rusanova A.M., Salina V.A., Turovsky E.A., Turovskaya M.V., Tarabykin V.S., Babaev A.A.
Key words: mouse mutagenesis; brain development genetics; phenotype screening; microcephaly; audiogenic epilepsy.
2018, volume 10, issue 3, page 70.

Full text

html pdf
3665
2045

The aim of the study is to identify new gene mutations causing cerebral cortex malformations in mice.

Materials and Methods. To identify genes causing cerebral cortex malformations, chemical mutagenesis was carried out using N-ethyl-N-nitrosourea as a mutagen. A total of 141 male C3H mice aged 8 weeks were injected with the mutagen in order to induce mutations in spermatogonial stem cells. After a period of sterility, the animals were used in three-generation backcross scheme. Satb2-LacZ reporter mice were involved in this strategy to label the neurons forming the corpus callosum.

Results. The animal phenotype displaying primary microcephaly and 6 mutant lines demonstrating audiogenic epilepsy have been described. The phenotypes of these mutants will be further presented and discussed.

  1. Ha S., Stottmann R.W., Furley A.J., Beier D.R. A forward genetic screen in mice identifies mutants with abnormal cortical patterning. Cereb Cortex 2015; 25(1): 167–179, https://doi.org/10.1093/cercor/bht209.
  2. Herron B.J., Lu W., Rao C., Liu S., Peters H., Bronson R.T., Justice M.J., McDonald J.D., Beier D.R. Efficient generation and mapping of recessive developmental mutations using ENU mutagenesis. Nat Genet 2002; 30(2): 185–189, https://doi.org/10.1038/ng812.
  3. Li H., Haurigot V., Doyon Y., Li T., Wong S.Y., Bhagwat A.S., Malani N., Anguela X.M., Sharma R., Ivanciu L., Murphy S.L., Finn J.D., Khazi F.R., Zhou S., Paschon D.E., Rebar E.J., Bushman F.D., Gregory P.D., Holmes M.C., High K.A. In vivo genome editing restores haemostasis in a mouse model of haemophilia. Nature 2011; 475(7355): 217–221, https://doi.org/10.1038/nature10177.
  4. Wang H., Yang H., Shivalila C.S., Dawlaty M.M., Cheng A.W., Zhang F., Jaenisch R. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 2013; 153(4): 910–918, https://doi.org/10.1016/j.cell.2013.04.025.
  5. Yang H., Wang H., Shivalila C.S., Cheng A.W., Shi L., Jaenisch R. One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell 2013; 154(6): 1370–1379, https://doi.org/10.1016/j.cell.2013.08.022.
  6. Russell W.L., Hunsicker P.R., Raymer G.D., Steele M.H., Stelzner K.F., Thompson H.M. Dose–response curve for ethylnitrosourea-induced specific-locus mutations in mouse spermatogonia. Proc Natl Acad Sci USA 1982; 79(11): 3589–3591, https://doi.org/10.1073/pnas.79.11.3589.
  7. Nolan P.M. Generation of mouse mutants as a tool for functional genomics. Pharmacogenomics 2000; 1(3): 243–255, https://doi.org/10.1517/14622416.1.3.243.
  8. Shedlovsky A., Guenet J.-L., Jonson L.L., Dove W.F. Induction of recessive lethal mutations in the T/t-H-2 region of the mouse genome by a point mutagen. Genet Res 1986; 47(2): 135–142, https://doi.org/10.1017/s0016672300022977.
  9. Zarbalis K., May S.R., Shen Y., Ekker M., Rubenstein J.L., Peterson A.S. A focused and efficient genetic screening strategy in the mouse: identification of mutations that disrupt cortical development. PLoS Biol 2004; 2(8): E219, https://doi.org/10.1371/journal.pbio.0020219.
  10. Hrabé de Angelis M.H., Flaswinkel H., Fuchs H., Rathkolb B., Soewarto D., Marschall S., Heffner S., Pargent W., Wuensch K., Jung M., Reis A., Richter T., Alessandrini F., Jakob T., Fuchs E., Kolb H., Kremmer E., Schaeble K., Rollinski B., Roscher A., Peters C., Meitinger T., Strom T., Steckler T., Holsboer F., Klopstock T., Gekeler F., Schindewolf C., Jung T., Avraham K., Behrendt H., Ring J., Zimmer A., Schughart K., Pfeffer K., Wolf E., Balling R. Genome-wide, large-scale production of mutant mice by ENU mutagenesis. Nat Genet 2000; 25(4): 444–447, https://doi.org/10.1038/78146.
  11. Huangfu D., Anderson K.V. Cilia and Hedgehog responsiveness in the mouse. Proc Natl Acad Sci USA 2005; 102(32): 11325–11330, https://doi.org/10.1073/pnas.0505328102.
  12. Matera I., Watkins-Chow D.E., Loftus S.K., Hou L., Incao A., Silver D.L., Rivas C., Elliott E.C., Baxter L.L., Pavan W.J. A sentized mutagenesis screen identifies Gli3 as a modifier of Sox10 neurocristopathy. Hum Mol Genet 2008; 17(14): 2118–2131, https://doi.org/10.1093/hmg/ddn110.
  13. Stottman R., Beier D.R. ENU mutagenesis in the mouse. Curr Protoc Hum Genet 2014; 82: 15.4.1–15.4.10, https://doi.org/10.1002/0471142905.hg1504s82.
  14. Piret S.E., Thakker R.V. Mouse models for inherited endocrine and metabolic disorders. J Endocrinol 2011; 211(3): 211–230, https://doi.org/10.1530/joe-11-0193.
  15. Salinger A.P., Justice M.J. Mouse mutagenesis using N-Ethyl-N-Nitrosourea (ENU). CSH Protoc 2008; 2008(5): pdb.prot4985, https://doi.org/10.1101/pdb.prot4985.
  16. Dobreva G., Dambacher J., Grosschedl R. SUMO modification of a novel MAR-binding protein, SATB2, modulates immunoglobulin mu gene expression. Genes Dev 2003; 17(24): 3048–3061, https://doi.org/10.1101/gad.1153003.
  17. Krushinsky L.V. Some stages of integration in the formation of behavior in animals. Uspekhi sovremennoi biologii 1948; 26: 2(5): 737–754.
  18. Semiokhina A.F., Fedotova I.B., Poletaeva I.I. Rats of Krushinsky–Molodkina strain: studies of audiogenic epilepsy, vascular pathology and behavior. Zhurnal vysshei nervnoi deyatelnosti imeni I.P. Pavlova 2006; 56(3): 298–316.
  19. Faingold C.L. Neuronal networks in the genetically epilepsy-prone rat. Adv Neurol 1999; 79: 311–321.
  20. Jobe P.C., Browning R.A. Mammalian models of genetic epilepsy characterized by sensory-evoked seizures and generalized seizure susceptibility. In: Pitkänen A., Schwartzkroin P.A., Moshé S.L. (editors). Models of seizures and epilepsy. Elsevier; 2006; p. 261–271, https://doi.org/10.1016/b978-012088554-1/50022-0.
  21. Ross K.C., Coleman J.R. Development and genetic audiogenic seizure models: behavior and biological substrates. Neurosci Biobehav Rev 2000; 24(6): 639–653, https://doi.org/10.1016/s0149-7634(00)00029-4.
  22. Löscher W. Animal models of seizures and epilepsy: past, present, and future role for the discovery of antiseizure drugs. Neurochem Res 2017; 42(7): 1873–1888, https://doi.org/10.1007/s11064-017-2222-z.
  23. Krushinsky L.V. Formirovanie povedeniya zhivotnykh v norme i patologii [Formation of animal behavior in norm and pathology]. Moscow: Izd-vo MGU; 1960; 265 p.
  24. Vinogradova L.V. Audiogenic kindling in Wistar and WAG/Rij rats: kindling-prone and kindling-resistant subpopulations. Epilepsia 2008; 49(10): 1665–1674, https://doi.org/10.1111/j.1528-1167.2008.01617.x.
  25. Beier D.R., Herron B.J. Genetic mapping and ENU mutagenesis. Genetica 2004; 122(1): 65–69, https://doi.org/10.1007/s10709-004-1437-5.
  26. Moran L.B., Duke D.C., Deprez M., Dexter D.T., Pearce R.K., Graeber M.B. Whole genome expression profiling of the medial and lateral substantia nigra in Parkinson’s disease. Neurogenetics 2006; 7(1): 1–11, https://doi.org/10.1007/s10048-005-0020-2.
Borisova Е.V., Epifanova E.A., Tutukova S.A., Belousova I.I., Zhidkova N.M., Rusanova A.M., Salina V.A., Turovsky E.A., Turovskaya M.V., Tarabykin V.S., Babaev A.A. Identification of Novel Mutations Controlling Cerebral Cortex Malformations Caused by ENU-Induced Mutagenesis in the Mouse. Sovremennye tehnologii v medicine 2018; 10(3): 70, https://doi.org/10.17691/stm2018.10.3.8


Journal in Databases

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg

SCImago Journal & Country Rank