Today: Dec 21, 2024
RU / EN
Last update: Oct 30, 2024
A Functional Electrical Stimulation System for Integration in an Exoskeleton

A Functional Electrical Stimulation System for Integration in an Exoskeleton

Kаstalskiy I.А., Khoruzhko М.А., Skvortsov D.V.
Key words: functional electrical stimulation; rehabilitation; exoskeleton; locomotor system disorder.
2018, volume 10, issue 3, page 104.

Full text

html pdf
2814
2028

Currently, there are no exoskeletons with an integrated functional electrical stimulation (FES) system presented on a medical market except for stationary systems.

The aim of the study was to develop FES system, which can be initially integrated in a lower limb exoskeleton to provide the best compatibility and synchronization of the system operation with exoskeleton joints when a patient is moving.

Results. We have developed FES system and the approach to integrate it in an exoskeleton. FES provides for simultaneous work of 2–4 stimulation channels, each of which supports the setting of signal parameters (frequency, amplitude, duration). On-off stimulation time depends on a walking cycle determined by the gait classification algorithm. The presence of synchronizing signals for the left and the right sides provides FES coordinated operation in both lower limbs of a patient. The sphere of application of an exoskeleton with an integrated FES is medical rehabilitation.

  1. Hill D., Holloway C.S., Morgado Ramirez D.Z., Smitham P., Pappas Y. What are user perspectives of exoskeleton technology? A literature review. Int J Technol Assess Health Care 2017; 33(2): 160–167, https://doi.org/10.1017/s0266462317000460.
  2. Fukaya T., Mutsuzaki H., Yoshikawa K., Sano A., Mizukami M., Yamazaki M. The training effect of early intervention with a hybrid assistive limb after total knee arthroplasty. Case Rep Orthop 2017; 2017: 6912706, https://doi.org/10.1155/2017/6912706.
  3. McGibbon C.A., Brandon S.C.E., Brookshaw M., Sexton A. Effects of an over-ground exoskeleton on external knee moments during stance phase of gait in healthy adults. Knee 2017; 24(5): 977–993, https://doi.org/10.1016/j.knee.2017.04.004.
  4. Thrasher T.A., Popovic M.R. Functional electrical stimulation of walking: function, exercise and rehabilitation. Ann Readapt Med Phys 2008; 51(6): 452–460, https://doi.org/10.1016/j.annrmp.2008.05.006.
  5. Dimitrijevic M.M., Dimitrijevic M.R. Clinical elements for the neuromuscular stimulation and functional electrical stimulation protocols in the practice of neurorehabilitation. Artif Organs 2002; 26(3): 256–259, https://doi.org/10.1046/j.1525-1594.2002.06946.x.
  6. Bijak M., Rakos M., Hofer C., Mayr W., Strohhofer M., Raschka D. Stimulation parameter optimization for FES supported standing up and walking in SCI patients. Artif Organs 2005; 29(3): 220–223, https://doi.org/10.1111/j.1525-1594.2005.29039.x.
  7. Matjacic Z., Bajd T. Arm-free paraplegic standing — part II: experimental results. IEEE Trans Rehabil Eng 1998; 6(2): 139–150, https://doi.org/10.1109/86.681179.
  8. Holderbaum W., Hunt K.J., Gollee H. H∞ robust control design for unsupported paraplegic standing: experimental evaluation. Control Eng Pract 2002; 10(11): 1211–1222, https://doi.org/10.1016/S0967-0661(02)00082-5.
  9. Thrasher T.A., Flett H.E., Popovic M.R. Gait training regimen for incomplete spinal cord injury using functional electrical stimulation. Spinal Cord 2006; 44(6): 357–361, https://doi.org/10.1038/sj.sc.3101864.
  10. Kralj A., Bajd T., Turk R. Enhancement of gait restoration in spinal injured patients by functional electrical stimulation. Clin Orthop Relat Res 1988; 1998(233): 34–43, https://doi.org/10.1097/00003086-198808000-00006.
  11. Graupe D., Davis R., Kordylewski H., Kohn K.H. Ambulation by traumatic T4-12 paraplegics using functional neuromuscular stimulation. Crit Rev Neurosurg 1998; 8(4): 221–231, https://doi.org/10.1007/s003290050081.
  12. Mazzoleni S., Battini E., Rustici A., Stampacchia G. An integrated gait rehabilitation training based on functional electrical stimulation cycling and overground robotic exoskeleton in complete spinal cord injury patients: preliminary results. IEEE Int Conf Rehabil Robot 2017; 2017: 289–293, https://doi.org/10.1109/icorr.2017.8009261.
  13. Ha K.H., Murray S.A., Goldfarb M. An approach for the cooperative control of FES with a powered exoskeleton during level walking for persons with paraplegia. IEEE Trans Neural Syst Rehabil Eng 2016; 24(4): 455–466, https://doi.org/10.1109/TNSRE.2015.2421052.
  14. Alibeji N.A., Kirsch N.A., Sharma N. A muscle synergy-inspired adaptive control scheme for a hybrid walking neuroprosthesis. Front Bioeng Biotechnol 2015; 3: 203, https://doi.org/10.3389/fbioe.2015.00203.
  15. del-Ama A.J., Gil-Agudo A., Pons J.L., Moreno J.C. Hybrid FES-robot cooperative control of ambulatory gait rehabilitation exoskeleton. J Neuroeng Rehabil 2014; 11(1): 27, https://doi.org/10.1186/1743-0003-11-27.
  16. Ha K.H., Quintero H.A., Farris R.J., Goldfarb M. Enhancing stance phase propulsion during level walking by combining FES with a powered exoskeleton for persons with paraplegia. Conf Proc IEEE Eng Med Biol Soc 2012; 2012: 344–347, https://doi.org/10.1109/embc.2012.6345939.
  17. Chang S.R., Kobetic R., Audu M.L., Quinn R.D., Triolo R.J. Powered lower-limb exoskeletons to restore gait for individuals with paraplegia — a review. Case Orthop J 2015; 12(1): 75–80.
  18. Chang S.R., Nandor M.J., Li L., Kobetic R., Foglyano K.M., Schnellenberger J.R., Audu M.L., Pinault G., Quinn R.D., Triolo R.J. A muscle-driven approach to restore stepping with an exoskeleton for individuals with paraplegia. J Neuroeng Rehabil 2017; 14(1): 48, https://doi.org/10.1186/s12984-017-0258-6.
  19. Vitenzon A.S., Petrushanskaya K.A., Skvortsov D.V. Rukovodstvo po primeneniyu metoda iskusstvennoy korrektsii khodby i ritmicheskikh dvizheniy posredstvom programmiruemoy elektrostimulyatsii myshts [Manual on the use of the method of artificial correction of walking and rhythmic movements through programmed electrical stimulation of muscles]. Moscow; 2004; 284 p.
  20. Mineev S.A., Novikov V.A., Kuzmina I.V., Shatalin R.A., Grin I.V. Goniometric sensor interface for exoskeleton system control device. Biomed Eng 2016; 49(6): 357–361, https://doi.org/10.1007/s10527-016-9566-6.
Kаstalskiy I.А., Khoruzhko М.А., Skvortsov D.V. A Functional Electrical Stimulation System for Integration in an Exoskeleton. Sovremennye tehnologii v medicine 2018; 10(3): 104, https://doi.org/10.17691/stm2018.10.3.12


Journal in Databases

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg

SCImago Journal & Country Rank