Today: Jan 21, 2025
RU / EN
Last update: Dec 27, 2024
Information Technology in Health Care: Information Retrieval, Processing, and Protection (Review)

Information Technology in Health Care: Information Retrieval, Processing, and Protection (Review)

Kuznetsov A.B., Mukhin A.S., Simutis I.S., Shchegolkov L.A., Boyarinov G.А.
Key words: information technologies in medicine; computer technologies in health care; data protection.
2018, volume 10, issue 3, page 213.

Full text

html pdf
3946
2029

Hacker attacks on information resources in clinics of the UK, Belgium, Lithuania, clinical and biochemical laboratories in Russia and Belarus in 2017 as well as the refusal of 199 German hospital managers to use modern computer information technologies in 2016 gave an impetus to investigate the issue of computerization in health-care facilities.

The need for using computer information technology is unchallengeable, though its current use in clinical practice is associated with a number of problems. Besides, the amount of clinical data is increasing, while some information remains unanalyzed posing risks of fatal errors.

This review describes the problems of computer technology implementation, use, and protection. To make computer technology work effectively in the health care system, we have to deal with the following problems: architecture compatibility, perception and interpretation of handwritten text, interpretation of medical terms, text formalization and standardization, creation of electronic medical notes, development of electronic medical records and databases, personalization and protection of information.

  1. Ng K., Ghoting A., Steinhubl S.R., Stewart W.F., Malin B., Sun J. PARAMO: a PARAllel predictive MOdeling platform for healthcare analytic research using electronic health records. J Biomed Inform 2014; 48: 160–170, https://doi.org/10.1016/j.jbi.2013.12.012.
  2. Pai V.M., Rodgers M., Conroy R., Luo J., Zhou R., Seto B. Workshop on using natural language processing applications for enhancing clinical decision making: an executive summary. J Am Med Inform Assoc 2014; 21(e1): e2–e5, https://doi.org/10.1136/amiajnl-2013-001896.
  3. Ilyasov R.R., Kalinchenko S.Yu., Danilov A.B. The role of sex hormones in the perception of pain. Manage Pain 2015; 2: 4–9.
  4. Kraus O. Possibilities and methods of therapy of diseases of phases of impregnation and degeneration. BM: Biologicheskaya meditsina 2015; 2: 6–12.
  5. Smit A. Introduction to bioregulatory medicine: theoretical and practical aspects. BM: Biologicheskaya meditsina 2015; 2: 17–29.
  6. Boyarinov G.A., Deryugina A.V., Boyarinova L.V., Solovieva O.D., Zaitsev R.R., Moshnina E.V., Voennov O.V., Shumilova A.V. Experimental grounding and results of applying Mexicor for correction of proand antioxidant system disorders in the case of patients having complex thoracoabdominal trauma. Medial 2015; 16(2): 31–35.
  7. Holmes J.H. Methods and applications of evolutionary computation in biomedicine. J Biomed Inform 2014; 49: 11–15, https://doi.org/10.1016/j.jbi.2014.05.008.
  8. Hoverman J.R. From the first visit on: information technology and communication. J Oncol Practice 2013; 9(3): 152–154, https://doi.org/10.1200/jop.2013.000974.
  9. Kuznetsov A.B. Prognozirovanie rezultatov lecheniya patsienta v kriticheskom sostoyanii [Predicting the results of treatment of a patient in a critical condition]. Saarbrücken: LAP LAMBERT Academic Publishing; 2015; 248 p.
  10. Dilenyan L.R., Bagry A.S., Belkaniya G.S., Ryzhakov D.I., Pukhalskaya L.G. Anthropogenetic and ontogenetic model of general clinical evidence of somatic human condition. Medicinskij al’manah 2015; 4(39): 222–227.
  11. Gumanenko E.K., Rud′ A.A., Khromov A.A., Chapurin V.A. Znachenie obektivnoy otsenki tyazhesti sostoyaniya postradavshikh v diagnostike poliorgannoy disfunktsii i infektsionnykh oslozhneniy tyazhelykh travm. V kn.: Peritonit ot A do Ya (Vserossiyskaya shkola) [The significance of an objective assessment of the severity of the condition of the victims in the diagnosis of multiple organ dysfunction and infectious complications of severe injuries. In: Peritonitis from A to Z (All-Russian School)]. Pod red. Laricheva A.B. [Larichev A.B. (editor)]. Yaroslavl; 2016; p. 212–217.
  12. Kuznetsov A.S., Polyanskiy A.A., Volynskiy P.V., Efremov R.G. Kompyuternoe modelirovanie dimerizatsii transmembrannykh domenov glikoforina A: dominiruyushchaya rol effektov sredy. V kn.: Materialy V sezda biofizikov Rossii. T. 1 [Computer simulation of dimerization of glycophorin A transmembrane domains: the dominant role of medium effects. In: Materials of the 5th Congress of Russian Biophysicists. Vol. 1]. Pod red. Rubina A.B., Uzdenskogo A.B. [Rubin A.B., Uzdenskiy A.B. (editors)]. Rostov-on-Don: Izdatelstvo Yuzhnogo federalnogo universiteta; 2015; p. 92.
  13. Anshari M., Almunavar M.N. Modile healt (mHealt) services and online educators. Biomed Inform Insights 2016; 8: 19–27, https://doi.org/10.4137/bii.s35388.
  14. Filippova A.V., Baindurashvili A.G., Komosko M.M., Semenov M.G., Zaripova Z.A. Using 3D technologies in medicine. Virtualnye tekhnologii v meditsine 2015; 14(2): 38–39.
  15. Kazantsev I.S., Kudryakov S.D., Shitikov A.S. Implementation mechanisms of permanent stealth keyboard monitoring subsystem for detecting legitimate operator substitution. Sovremennye tendentsii razvitiya nauki i tekhnologiy 2016; 5–3: 61–63.
  16. Kazantsev I.S. Methods of operator identification and authentication in modern systems of information access control and management. Sovremennye tendentsii razvitiya nauki i tekhnologiy 2016; 5–3: 63–66.
  17. Kolomoitcev V.S. Choice of option for implementation of the multilevel secure access to the external network. Nauchno-tehnicheskii vestnik informatsionnykh tekhnologii, mekhaniki i optik 2016; 16(1): 115–121, https://doi.org/10.17586/2226-1494-2016-16-1-115-121.
  18. ONDOC. URL: http://www.ondoc.me.
  19. Kucherova V.Yu., Petkov V.N., Artamonov P.A. Foundation of ADAR method in the solution of a problem for typical nonlinear systems balanced modes stabilization. Fundamentalnye issledovaniya 2016; 5–2: 264–268.
  20. Akimov V.P., Batalov I.Kh., Tvorogov D.A., Zenkova A.V. Posleoperatsionnyy zhelchnyy peritonit. V kn.: Peritonit ot A do Ya (Vserossiyskaya shkola) [Postoperative bile peritonitis. In: Peritonitis from A to Z (All-Russian School)]. Pod red. Laricheva A.B. [Larichev A.B. (editor)]. Yaroslavl; 2016; p. 66–67.
  21. Jones K.H., Ford D.V., Jones C., Dsilva R., Thompson S., Brooks C.J., Heaven M.L., Thayer D.S., McNerney C.L., Lyons R.A. A case study of the Secure Anonymous Information Linkage (SAIL) Gateway: a privacy-protecting remote access system for health-related research and evaluation. J Biomed Inform 2014; 50: 196–204, https://doi.org/10.1016/j.jbi.2014.01.003.
  22. Schnipper L.E., Davidson N.E., Wollins D.S., Tyne C., Blayney D.W., Blum D., Dicker A.P., Ganz P.A., Hoverman J.R., Langdon R., Lyman G.H., Meropol N.J., Mulvey T., Newcomer L., Peppercorn J., Polite B., Raghavan D., Rossi G., Saltz L., Schrag D., Smith T.J., Yu P.P., Hudis C.A., Schilsky R.L.; American Society of Clinical Oncology. American Society of Clinical Oncology Statement: a conceptual framework to assess the value of cancer treatment options. J Clin Oncol 2015; 33(23): 2563–2557, https://doi.org/10.1200/jco.2015.61.6706.
  23. Beber M.E., Muskhelishvili G., Hütt M.T. Effect of database drift on network topology and enrichment analyses: a case study for RegulonDB. Database 2016; pii: baw003, https://doi.org/10.1093/database/baw003.
  24. Camara C., Peris-Lopez P., Tapiador J.E. Security and privacy issues in implantable medical devices: a comprehensive survey. J Biomed Inform 2015; 55: 272–289, https://doi.org/10.1016/j.jbi.2015.04.007.
  25. Chowdhury F.M., Zweigenbaum P. A controlled greedy supervised approach for co-reference resolution on clinical text. J Biomed Inform 2013; 46(3): 506–515, https://doi.org/10.1016/j.jbi.2013.03.007.
  26. Clark M. Prediction of clinical risks by analysis of preclinical and clinical adverse events. J Biomed Inform 2015; 54: 167–173, https://doi.org/10.1016/j.jbi.2015.02.008.
  27. Mehrabi S., Krishnan A., Sohn S., Roch A.M., Schmidt H., Kesterson J., Beesley C., Dexter P., Max Schmidt C., Liu H., Palakal M. DEEPEN: a negation detection system for clinical text incorporating dependency relation into NegEx. J Biomed Inform 2015; 54: 213–219, https://doi.org/10.1016/j.jbi.2015.02.010.
  28. Thye J., Hübner U., Straede M.-C., Liebe J.-D. Development and evaluation of a three-dimensional multi-level model for visualising the workflow composite score in a health IT benchmark. J Biomed Eng Inform 2016; 2(2): 83–98, https://doi.org/10.5430/jbei.v2n2p83.
  29. Ben-Assuli O., Sagi D., Leshno M., Ironi A., Ziv A. Improving diagnostic accuracy using EHR in emergency departments: a simulation-based study. J Biomed Inform 2015; 55: 31–40, https://doi.org/10.1016/j.jbi.2015.03.004.
  30. Ojo A.I., Popoola S.O. Some correlates of electronic health information management system success in Nigerian Teaching Hospitals. Biomed Inform Insights 2015; 7: 1–9, https://doi.org/10.4137/bii.s20229.
  31. Miwa M., Thomas J., O’Mara-Eves A., Ananiadou S. Reducing systematic review workload through certainty-based Screening. J Biomed Inform 2014; 51: 242–253, https://doi.org/10.1016/j.jbi.2014.06.005.
  32. Soares M., Salluh J.I. Providing high-quality and affordable intensive care to patients with cancer: the forgotten brick in the steep wall of costs throughout the cancer care continuum. J Clin Oncol 2014; 32(13): 1384–1385, https://doi.org/10.1200/jco.2013.54.6614.
  33. Moran M.S., Kaufman C., Burgin C., Swain S., Granville T., Winchester D.P. What currently defines a breast center? Initial Data from the National Accreditation Program for breast centers. J Oncol Pract 2013; 9(9): e62–e70, https://doi.org/10.1200/jop.2012.000636.
  34. Yu H., Zhang J.J., Lee T.-Y. Foldover-free shape deformation for biomedicine. J Biomed Inform 2014; 48: 137–147, https://doi.org/10.1016/j.jbi.2013.12.011.
  35. Ferrante A., Boyd J. A transparent and transportable methodology for evaluating Data Linkage software. J Biomed Inform 2012; 45: 165–172, https://doi.org/10.1016/j.jbi.2011.10.006.
  36. Sun W., Rumshisky A., Uzuner O. Temporal reasoning over clinical text: the state of the art. J Am Med Inform Assoc 2013; 20(5): 814–819, https://doi.org/10.1136/amiajnl-2013-001760.
  37. Cohen K.B., Glass B., Greiner H.M., Holland-Bouley K., Standridge S., Arya R., Faist R., Morita D., Mangano F., Connolly B., Glauser T., Pestian J. Methodological issues in predicting pediatric epilepsy surgery candidates through natural language processing and machine learning. Biomed Inform Insights 2016; 8: 11–18, https://doi.org/10.4137/bii.s38308.
  38. Altabasova Z.Yu. Latest methods of neologism formation at the current stage of English language development. Sovremennye tendentsii razvitiya nauki i tekhnologiy 2016; 5–4: 17–19.
  39. Bykador V.S., Popov Yu.V. Parametric identification of high-order systems by regression methods using low-order models. Sovremennye tendentsii razvitiya nauki i tekhnologiy 2016; 5–3: 48–54.
  40. Harispe S., Sanchez D., Ranwez S., Janaqi S., Montmain J. A framework for unifying ontology-based semantic similarity measures: а study in the biomedical domain. J Biomed Inform 2014; 48: 38–53, https://doi.org/10.1016/j.jbi.2013.11.006.
  41. Bousquet C., Sadou E., Souvignet J., Jaulent M.-C., Declerck G. Formalizing MedDRA to support semantic reasoning on adverse drug reaction terms. J Biomed Inform 2014; 49: 282–291, https://doi.org/10.1016/j.jbi.2014.03.012.
  42. Luo Y., Szolovits P. Efficient queries of stand-off annotations for natural language processing on electronic medical records. Biomed Inform Insights 2016; 8: 29–38, https://doi.org/10.4137/bii.s38916.
  43. McInnes B.T., Stevenson M. Determining the difficulty of Word Sense Disambiguation. J Biomed Inform 2014; 47: 83–90, https://doi.org/10.1016/j.jbi.2013.09.009.
  44. Skrøvseth S.O., Augestad K.M., Ebadollahi S. Data-driven approach for assessing utility of medical tests using electronic medical records. J Biomed Inform 2015; 53: 270–276, https://doi.org/10.1016/j.jbi.2014.11.011
  45. Skeppstedt M., Kvist M., Nilsson G.H., Dalianis H. Automatic recognition of disorders, findings, pharmaceuticals and body structures from clinical text: an annotation and machine learning study. J Biomed Inform 2014; 49: 148–158, https://doi.org/10.1016/j.jbi.2014.01.012.
  46. Tang B., Wu Y., Jiang M., Chen Y., Denny J.C., Xu H. A hybrid system for temporal information extraction from clinical text. J Am Med Inform Assoc 2013; 20(5): 828–835, https://doi.org/10.1136/amiajnl-2013-001635.
  47. El Emam K., Farah H., Samet S., Essex A., Jonker E., Kantarcioglu M., Earle C.C. A privacy preserving protocol for tracking participants in phase I clinical trials. J Biomed Inform 2015; 57: 145–162, https://doi.org/10.1016/j.jbi.2015.06.019.
  48. Rajamani S., Chen E.S., Akre M.E., Wang Y., Melton G.B. Assessing the adequacy of the HL7/LOINC Document Ontology Role axis. J Am Med Inform Assoc 2015; 22(3): 615–620, https://doi.org/10.1136/amiajnl-2014-003100.
  49. Krist A.H., Woolf S.H., Bello G.A., Sabo R.T., Longo D.R., Kashiri P., Etz R.S., Loomis J., Rothemich S.F., Peele J.E., Cohn J. Engaging primary care patients to use a patient-centered personal health record. Ann Fam Med 2014; 5: 418–426, https://doi.org/10.1370/afm.1691.
  50. Leaman R., Khare R., Lu Z. Challenges in clinical natural language processing for automated disorder normalization. J Biomed Inform 2015; 57: 28–37, https://doi.org/10.1016/j.jbi.2015.07.010.
  51. Skałkowski K., Zieliński K. Applying formalized rules for treatment procedures to data delivered by personal medical devices. J Biomed Inform 2013; 46(3): 530–540, https://doi.org/10.1016/j.jbi.2013.04.005.
  52. Kim S., Liu H., Yeganova L., Wilbur W.J. Extracting drug–drug interactions from literature using a rich feature-based linear kernel approach. J Biomed Inform 2015; 55: 23–30, https://doi.org/10.1016/j.jbi.2015.03.002.
  53. McCoy A.B., Wright A., Rogith D., Fathiamini S., Ottenbacher A.J., Sittig D.F. Development of a clinician reputation metric to identify appropriate problem-medication pairs in a crowdsourced knowledge base. J Biomed Inform 2014; 48: 66–72, https://doi.org/10.1016/j.jbi.2013.11.010.
  54. Deutsch E.W., Albar J.P., Binz P.A., Eisenacher M., Jones A.R., Mayer G., Omenn G.S., Orchard S., Vizcaíno J.A., Hermjakob H. Development of data representation standards by the human proteome organization proteomics standards initiative. J Am Med Inform Assoc 2015; 22(3): 496–506, https://doi.org/10.1093/jamia/ocv001.
  55. Lopetegui M., Yen P.-Y., Lai A., Jeffries J., Embi P., Payne P. Time motion studies in healthcare: what are we talking about? J Biomed Inform 2014; 49: 292–299, https://doi.org/10.1016/j.jbi.2014.02.017.
  56. Vincent C.J., Blandford A. Usability standards meet scenario-based design: challenges and opportunities. J Biomed Inform 2015; 53: 243–250, https://doi.org/10.1016/j.jbi.2014.11.008.
  57. Wijdicks EF. Brain death worldwide: accepted fact but no global consensus in diagnostic criteria. Neurology 2002; 58(1): 20–25, https://doi.org/10.1212/wnl.58.1.20.
  58. Khare R., Li J., Lu Z. LabeledIn: cataloging labeled indications for human drugs. J Biomed Inform 2014; 52: 448–456, https://doi.org/10.1016/j.jbi.2014.08.004.
  59. Ochs C., Geller J., Perl Y., Chen Y., Xu J., Min H., Case J.T., Wei Z. Scalable quality assurance for large SNOMED CT hierarchies using subject-based subtaxonomies. J Am Med Inform Assoc 2015; 22: 507–518, https://doi.org/10.1136/amiajnl-2014-003151.
  60. Luo L., Mejino J.L.V. Jr., Zhang G.-Q. An analysis of FMA using structural self-bisimilarity. J Biomed Inform 2013; 46(3): 497–505, https://doi.org/10.1016/j.jbi.2013.03.005.
  61. Mamykina L., Smaldone A.M., Bakken S.R. Adopting the sensemaking perspective for chronic disease self-management. J Biomed Inform 2015; 56: 406–417, https://doi.org/10.1016/j.jbi.2015.06.006.
  62. Gobbel G.T., Reeves R., Jayaramaraja S., Giuse D., Speroff T., Brown S.H., Elkin P.L., Matheny M.E. Development and evaluation of RapTAT: а machine learning system for concept mapping of phrases from medical narratives. J Biomed Inform 2014; 48: 54–65, https://doi.org/10.1016/j.jbi.2013.11.008.
  63. Yabroff K.R., Francisci S., Mariotto A., Mezzetti M., Gigli A., Lipscomb J. Advancing comparative studies of patterns of care and economic outcomes in cancer: challenges and opportunities. J Natl Cancer Inst Monogr 2013; 46: 1–6, https://doi.org/10.1093/jncimonographs/lgt005.
  64. South B.R., Mowery D., Suo Y., Leng J., Ferrández Ó., Meystre S.M., Chapman W.W. Evaluating the effects of machine pre-annotation and an interactive annotation interface on manual de-identification of clinical text. J Biomed Inform 2014; 50: 162–172, https://doi.org/10.1016/j.jbi.2014.05.002.
  65. Sarker A., Gonzalez G. Portable automatic text classification for adverse drug reaction detection via multi-corpus training. J Biomed Inform 2015; 53: 196–207, https://doi.org/10.1016/j.jbi.2014.11.002.
  66. Xierali I.M., Hsiao C.J., Puffer J.C., Green L.A., Rinaldo J.C., Bazemore A.W., Burke M.T., Phillips R.L. Jr. The rise of electronic health record adoption among family physicians. Ann Fam Med 2013; 11(1): 14–19, https://doi.org/10.1370/afm.1461.
  67. Sarker A., Ginn R., Nikfarjam A., O’Connor K., Smith K., Jayaraman S., Upadhaya T., Gonzalez G. Utilizing social media data for pharmacovigilance: a review. J Biomed Inform 2015; 54: 202–212, https://doi.org/10.1016/j.jbi.2015.02.004.
  68. Chow M., Beene M., O’Brien A., Greim P., Cromwell T., DuLong D., Bedecarre D. A nursing information model process for interoperability. J Am Med Inform Assoc 2015; 22(3): 608–614, https://doi.org/10.1093/jamia/ocu026.
  69. Viana-Ferreira C., Ribeiro L.S., Costa C. A framework for integration of heterogeneous medical imaging networks. Open Med Inform J 2014; 8(1): 20–32, https://doi.org/10.2174/1874431101408010020.
  70. Kaggal V.C., Elayavilli R.K., Mehrabi S., Pankratz J.J., Sohn S., Wang Y., Li D., Rastegar M.M., Murphy S.P., Ross J.L., Chaudhry R., Buntrock J.D., Liu H. Toward a Learning Health-care System — knowledge delivery at the point of care empowered by big data and NLP. Biomed Inform Insights 2016; 8(1): 13–22, https://doi.org/10.4137/bii.s37977.
  71. GOST R ISO/TO 20514-2009. Health informatics. Electronic health record. Definition, scope and context. URL: http://docs.cntd.ru/document/gost-r-iso-to-20514-2009.
  72. Kartashova A.L. The case history as the basic legal document. Sovremennye tendentsii razvitiya nauki i tekhnologiy 2016; 5–1: 108–113.
  73. Gagnon M.P., Ghandour el K., Talla P.K., Simonyan D., Godin G., Labrecque M., Ouimet M., Rousseau M. Electronic health record acceptance by physicians: testing an integrated theoretical model. J Biomed Inform 2014; 48: 17–27, https://doi.org/10.1016/j.jbi.2013.10.010.
  74. Harris M.R., Langford L.H., Miller H., Hook M., Dykes P.C., Matney S.A. Harmonizing and extending standards from a domain-specific and bottom-up approach: an example from development through use in clinical applications. J Am Med Inform Assoc 2015; 22(3): 545–552, https://doi.org/10.1093/jamia/ocu020.
  75. Hripcsak G., Albers D.J. Correlating electronic health record concepts with healthcare process events. J Am Med Inform Assoc 2013; 20(e2): e311–e318, https://doi.org/10.1136/amiajnl-2013-001922.
  76. Hripcsak G., Albers D.J. Next-generation phenotyping of electronic health records. J Am Med Inform Assoc 2013; 20(1): 117–121, https://doi.org/10.1136/amiajnl-2012-001145.
  77. Hripcsak G., Albers D.J., Perotte A. Parameterizing time in electronic health record studies. J Am Med Inform Assoc 2015; 22(4): 794–804, https://doi.org/10.1093/jamia/ocu051.
  78. Kamdar M.R., Zeginis D., Hasnain A., Decker S., Deus H.F. ReVeaLD: a user-driven domain-specific interactive search platform for biomedical research. J Biomed Inform 2014; 47: 112–130, https://doi.org/10.1016/j.jbi.2013.10.001.
  79. Hanauer D.A., Mei Q., Law J., Khanna R., Zheng K. Supporting information retrieval from electronic health records: a report of University of Michigan’s nine-year experience in developing and using the Electronic Medical Record Search Engine (EMERSE). J Biomed Inform 2015; 55: 290–300, https://doi.org/10.1016/j.jbi.2015.05.003.
  80. Legaz-García M. del C., Menárguez-Tortosa M., Fernández-Breis J.T., Chute C.G., Tao C. Transformation of standardized clinical models based on OWL technologies: from CEM to OpenEHR archetypes. J Am Med Inform Assoc 2015; 22(3): 536–544, https://doi.org/10.1093/jamia/ocu027.
  81. Marcos C., González-Ferrer A., Peleg M., Cavero C. Solving the interoperability challenge of a distributed complex patient guidance system: a data integrator based on HL7’s Virtual Medical Record standard. J Am Med Inform Assoc 2015; 22: 587–599, https://doi.org/10.1093/jamia/ocv003.
  82. Electronic health record. URL: http://docs.cntd.ru/document/120004 8924.
  83. Federal Law No.258-FZ “On amending certain legislative acts of the Russian Federation and invalidating certain provisions of legislative acts of the Russian Federation on licensing of certain types of activity” dated 08.11.2007. URL: http://www.consultant.ru/document/cons_doc_LAW_72387.
  84. Federal Law No.1-FZ “On electronic digital signature” dated 10.01.2002. URL: http://www.consultant.ru/document/cons_doc_LAW_34838.
  85. Clancy T.R., Bowles K.H., Gelinas L., Androwich I., Delaney C., Matney S., Sensmeier J., Warren J., Welton J., Westra B. A call to action: engage in big data science. Nursing Outlook 2014; 62(1): 64–65, https://doi.org/10.1016/j.outlook.2013.12.006.
  86. Chen Y., Carroll R.J., Hinz E.R., Shah A., Eyler A.E., Denny J.C., Xu H. Applying active learning to high-throughput phenotyping algorithms for electronic health records data. J Am Med Inform Assoc 2013; 20(e2): e253–e259, https://doi.org/10.1136/amiajnl-2013-001945.
  87. Ancker J.S., Kern L.M., Edwards A., Nosal S., Stein D.M., Hauser D., Kaushal R. Associations between healthcare quality and use of electronic health record functions in ambulatory care. J Am Med Inform Assoc 2015; 22(4): 864–871, https://doi.org/10.1093/jamia/ocv030.
  88. Cimino J.J., Frisse M.E., Halamka J., Sweeney L., Yasnoff W. Consumer-mediated health information exchanges: the 2012 ACMI debate. J Biomed Inform 2014; 48: 5–15, https://doi.org/10.1016/j.jbi.2014.02.009.
  89. Chen Z., Wang Z., Wang H., Owonikoko T.K., Kowalski J., Khuri F.R. Interactive software “Isotonic Design using Normalized Equivalent Toxicity Score (ID-NETS©TM)” for cancer phase I clinical trials. Open Med Informat J 2013; 7: 8–17, https://doi.org/10.2174/1874431101307010008.
  90. Hsiao C.J., Jha A.K., King J., Patel V., Furukawa M.F., Mostashari F. Office-based physicians are responding to incentives and assistance by adopting and using electronic health records. Health Aff 2013; 32(8): 1470–1477, https://doi.org/10.1377/hlthaff.2013. 0323.
  91. Carroll L.N., Au A.P., Detwiler L.T., Fu T., Painter I.S., Abernethy N.F. Visualization and analytics tools for infectious disease epidemiology: a systematic review. J Biomed Inform 2014; 51: 287–298, https://doi.org/10.1016/j.jbi.2014.04.006.
  92. Braga R.D., de Lucena F.N., Ribeiro-Rotta R.F. A multiprofessional information model for Brazilian primary care: defining a consensus model towards an interoperable electronic health record. Int J Med Inform 2016; 90: 48–57, https://doi.org/10.1016/j.ijmedinf.2016.03.004.
  93. Komarova K.V. monitoring bazovykh stantsiy. V kn.: Proryvnye innovatsionnye issledovaniya [Monitoring base stations. In: Breakthrough research]. Pod red. Gulyaeva G.Yu. [Gulyaev G.Yu. (editor)]. Penza: MTSNS “Nauka i prosveshchenie”; 2016; p. 13–20.
  94. Edge S.B. The challenge of quality in breast care: beyond accreditation. J Oncol Practice 2013; 9(9): 271–272, https://doi.org/10.1200/jop.2012.000792.
  95. Medvedeva Y.A., Lennartsson A., Ehsani R., Kulakovskiy I.V., Vorontsov I.E., Panahandeh P., Khimulya G., Kasukawa T., Drabløs F.; FANTOM Consortium. EpiFactors: a comprehensive database of human epigenetic factors and complexes. Database 2015; 8(19): 1–10, https://doi.org/10.1093/database/bav067.
  96. Bellos E., Kumar V., Lin C., Maggi J., Phua Z.Y., Cheng C.Y., Cheung C.M., Hibberd M.L., Wong T.Y., Coin L.J., Davila S. СnvCapSeq: detecting copy number variation in long-range targeted resequencing data. Nucleic Acids Res 2014; 42(20): e158, https://doi.org/10.1093/nar/gku849.
  97. Hajian-Tilaki K. Sample size estimation in diagnostic test studies of biomedical informatics. J Biomed Inform 2014; 48: 193–204, https://doi.org/10.1016/j.jbi.2014.02.013.
  98. Curcin V., Woodcock T., Poots A.J., Majeed A., Bell D. Model-driven approach to data collection and reporting for quality improvement. J Biomed Inform 2014; 52: 151–162, https://doi.org/10.1016/j.jbi.2014.04.014.
  99. Miller R. Anesteziya. [Anesthesia. The manual is in 4 volumes]. Saint Petersburg: Izdatelstvo “Chelovek”; 2015; 3328 p.
  100. Zhang Y., Yu Z., Ban R., Zhang H., Iqbal F., Zhao A., Li A., Shi Q. DeAnnCNV: a tool for online detection and annotation of copy number variations from whole-exome sequencing data. Nucleic Acids Res 2015; 43(W1): W289–W294, https://doi.org/10.1093/nar/gkv556.
  101. Zhang R., Cairelli M.J., Fiszman M., Rosemblat G., Kilicoglu H., Rindflesch T.C., Pakhomov S.V., Melton G.B. Using semantic predications to uncover drug–drug interactions in clinical data. J Biomed Inform 2014; 49: 134–147, https://doi.org/10.1016/j.jbi.2014.01.004.
  102. Voss E.A., Makadia R., Matcho A., Ma Q., Knoll C., Schuemie M., DeFalco F.J., Londhe A., Zhu V., Ryan P.B. Feasibility and utility of applications of the common data model to multiple, disparate observational health databases. J Am Med Inform Assoc 2015; 22(3): 553–564, https://doi.org/10.1093/jamia/ocu023.
  103. Boyarinov G.A., Kuznetsov A.N., Kuznetsov A.B., Kushnikov O.I. Engineering and technical problems of anesthesiology, resuscitation and intensive care of critical conditions. Vestnik intensivnoy terapii 2016; S2: 10–12.
  104. Kulinich O.V. Significance of permanent potential level in predicting critical incidents after extensive abdominal surgery in elderly patients. Vestnik intensivnoy terapii 2016; S1: 88–91.
  105. Zaripova Z.A., Polushin Yu.S. Simulated critical incident in simulation training. Virtualnye tekhnologii v meditsine 2015; 2(14): 8–11.
  106. Kaushanskaya L.V., Lelik M.P., Dyagilev M.A., Pukhtinskaya M.V., Korneeva A.S. Training cardiopulmonary cerebral resuscitation at simulation centers. Virtualnye tekhnologii v meditsine 2016; 1(15): 20–22.
  107. Rikfleks V.P., Muldaeva G.M., Klochkova E.V., Kolesnikova E.A., Shushaeva A.A. Organizing and carrying out group objective structured clinical examination. Virtualnye tekhnologii v meditsine 2016; 1(15): 35–39.
  108. Cooper L., Nossaman B. Medication errors in anesthesia: a review. Int Anesthesiol Clin 2013; 51(1): 1–12, https://doi.org/10.1097/aia.0b013e31827d6486.
  109. Nanji K.C., Patel A., Shaikh S., Seger D.L., Bates D.W. Evaluation of perioperative medication errors and adverse drug events. Anesthesiology 2016; 124(1): 25–34, https://doi.org/10.1097/aln.0000000000000904.
  110. Fodeh S.J., Brandt C., Luong T.B., Haddad A., Schultz M., Murphy T., Krauthammer M. Complementary ensemble clustering of biomedical data. J Biomed Inform 2013; 46(3): 436–443, https://doi.org/10.1016/j.jbi.2013.02.001.
  111. Kumar S., Merchant S., Reynolds R. Tele-ICU: efficacy and cost-effectiveness approach of remotely managing the critical care. Open Med Inform J 2013; 7: 24–29, https://doi.org/10.2174/1874431101307010024.
  112. Miller R.A. Cognitive informatics in health and biomedicine: case studies on critical care, complexity, and errors. Vimla L. Patel, David R. Kaufman, Trevor Cohen (Eds.). Springer, London (2014). 505 pages. J Biomed Inform 2014; 49: 9–10, https://doi.org/10.1016/j.jbi.2014.04.011.
  113. Warner J.L., Zollanvari A., Ding Q., Zhang P., Snyder G.M., Alterovitz G. Temporal phenome analysis of a large electronic health record cohort enables identification of hospital-acquired complications. J Am Med Inform Assoc 2013; 20(e2): e281–e287, https://doi.org/10.1136/amiajnl-2013-001861.
  114. Peute L.W.P., de Keizer N.F., Jaspers M.W.M. The value of retrospective and concurrent think aloud in formative usability testing of a physician data query tool. J Biomed Inform 2015; 55: 1–10, https://doi.org/10.1016/j.jbi.2015.02.006.
  115. Walker M., Hermann C.D., Williams J.K., Vidacovic B., Olivares-Navarette R., Schwartz Z., Boyan B.D. Automated analysis and predictive modeling of craniosynostosis with cranial suture measurements and intracranial volume asymmetries using the snake algorithm. J Biomed Eng Inform 2016; 2(2): 132–149, https://doi.org/10.5430/jbei.v2n2p132.
  116. Franke S., Meixensberger J., Neumuth T. Multi-perspective workflow modeling for online surgical situation models. J Biomed Inform 2015; 54: 158–166, https://doi.org/10.1016/j.jbi.2015.02.005.
  117. Loizou C.P., Pantziaris M. An integrated system for the complete segmentation of the common carotid artery bifurcation in ultrasound images. J Biomed Eng Inform 2015; 1(1): 11–24, https://doi.org/10.5430/jbei.v1n1p11.
  118. Alexandridis A., Chondrodima E. A medical diagnostic tool based on radial basis function classifiers and evolutionary simulated annealing. J Biomed Inform 2014; 49: 61–72, https://doi.org/10.1016/j.jbi.2014.03.008.
  119. Tay D., Poh C.L., Kitney R.I. A novel neural-inspired learning algorithm with application to clinical risk prediction. J Biomed Inform 2015; 54: 305–314, https://doi.org/10.1016/j.jbi.2014.12.014.
  120. Krist A.H. Electronic health record innovations for healthier patients and happier doctors. J Am Board Fam Med 2015; 28(3): 299–302, https://doi.org/10.3122/jabfm.2015.03.150097.
  121. Altini M., Casale P., Penders J., Amft O. Personalized cardiorespiratory fitness and energy expenditure estimation using hierarchical Bayesian models. J Biomed Inform 2015; 56: 195–204, https://doi.org/10.1016/j.jbi.2015.06.008.
  122. Gardeux V., Bosco A., Li J., Halonen M.J., Jackson D., Martinez F.D., Lussier A.Y. Towards a PBMC “virogram assay” for precision medicine: Concordance between ex vivo and in vivo viral infection transcriptomes. J Biomed Inform 2015; 55: 94–103, https://doi.org/10.1016/j.jbi.2015.03.003.
  123. Vasilevskiy Yu.V., Simakov S.S., Gamilov T.M., Pryamonosov R.A. Personalizirovannaya vychislitelnaya otsenka fraktsionirovannogo rezerva krovotoka. V kn.: Materialy V sezda biofizikov Rossii. T. 1 [Patient-specific computational assessment of fractional flow reserve. In: Materials of the 5th Congress of Russian Biophysicists. Vol. 1]. Pod red. Rubina A.B., Uzdenskogo A.B. [Rubin A.B., Uzdenskiy A.B. (editors)]. Rostov-on-Don: Izdatelstvo Yuzhnogo federalnogo universiteta; 2015; p. 14.
  124. Wang S., Jiang X., Wu Y., Cui L., Cheng S., Ohno-Machado L. EXpectation Propagation LOgistic REgRession (EXPLORER): Distributed privacy-preserving online model learning. J Biomed Inform 2013; 46(3): 480–496, https://doi.org/10.1016/j.jbi.2013.03.008.
  125. Petrov D.A., Galeb K.E.S., Proskurin S.G. Optical coherence tomography B-scan simulation using monte carlo method with voxel geometry representation of an object. Fundamentalnye issledovaniya 2016; 5–2: 275–278.
  126. Soloveva O.E. Modelirovanie miokarda: ot kletki do organa. V kn.: Materialy V sezda biofizikov Rossii. T. 1 [Myocardial modeling: from cell to organ. In: Materials of the 5th Congress of Russian Biophysicists. Vol. 1]. Pod red. Rubina A.B., Uzdenskogo A.B. [Rubin A.B., Uzdenskiy A.B. (editors)]. Rostov-on-Don: Izdatelstvo Yuzhnogo federalnogo universiteta; 2015; p. 48.
  127. Ayvaz S., Horn J., Hassanzadeh O., Zhu Q., Stan J., Tatonetti N.P., Vilar S., Brochhausen M., Samwald M., Rastegar-Mojarad M., Dumontier M., Boyce R.D. Toward a complete dataset of drug–drug interaction information from publicly available sources. J Biomed Inform 2015; 55: 206–217, https://doi.org/10.1016/j.jbi.2015.04.006.
  128. Chen Y., Ghosh J., Bejan C.A., Gunter C.A., Gupta S., Kho A., Liebovitz D., Sun J., Denny J., Malin B. Building bridges across electronic health record systems through inferred phenotypic topics. J Biomed Inform 2015; 55: 82–93, https://doi.org/10.1016/j.jbi.2015.03.011.
  129. Liu B., Madduri R.K., Sotomayor B., Chard K., Lacinski L., Dave U.J., Li J., Liu C., Foster I.T. Cloud-based bioinformatics workflow platform for large-scale next-generation sequencing analyses. J Biomed Inform 2014; 49: 119–133, https://doi.org/10.1016/j.jbi.2014.01.005.
  130. Fricke W.F., Rasko D.A. Bacterial genome sequencing in the clinic: bioinformatic challenges and solutions. Nat Rev Genet 2014; 15(1): 49–55, https://doi.org/10.1038/nrg3624.
  131. Gotz D., Wang F., Perer A. A methodology for interactive mining and visual analysis of clinical event patterns using electronic health record data. J Biomed Inform 2014; 48: 148–159, https://doi.org/10.1016/j.jbi.2014.01.007.
  132. Kakouros N. Distributed storage healthcare — the basis of a planet-wide public health care network. Open Med Inform J 2013; 7: 1–7, https://doi.org/10.2174/1874431101307010001.
  133. Klann J.G., Buck M.D., Brown J., Hadley M., Elmore R., Weber G.M., Murphy S.N. Query Health: standards-based, cross-platform population health surveillance. J Am Med Inform Assoc 2014; 21(4): 650–656, https://doi.org/10.1136/amiajnl-2014-002707.
  134. Le T., Chaudhuri S., Chung J., Thompson H.J., Demiris G. Tree testing of hierarchical menu structures for health applications. J Biomed Inform 2014; 49: 198–205, https://doi.org/10.1016/j.jbi.2014.02.011.
  135. Guidance for industry and food and drug administration staff. 2016. URL: https://www.fda.gov.
  136. Pokhilenko O.V. Secure way to share and store data using cloud storage. Sovremennye tendentsii razvitiya nauki i tekhnologiy 2016; 6–1: 78–83.
  137. Ponomareva N.S., Panich A.E. Ekspertnaya sistema podderzhki prinyatiya resheniy v otsenke sostoyaniya reproduktivnoy sistemy cheloveka.V kn.: Materialy V sezda biofizikov Rossii. T. 2 [Expert decision-support system in assessing the state of human reproductive system. In: Materials of the 5th Congress of Russian Biophysicists. Vol. 2]. Pod red. Rubina A.B., Uzdenskogo A.B. [Rubin A.B., Uzdenskiy A.B. (editors)]. Rostov-on-Don: Izdatelstvo Yuzhnogo federalnogo universiteta; 2015; p. 24.
  138. Westra B.L., Latimer G.E., Matney S.A., Park J.I., Sensmeier J., Simpson R.L., Swanson M.J., Warren J.J., Delaney C.W. A national action plan for sharable and comparable nursing data to support practice and translational research for transforming health care. J Am Med Inform Assoc 2015; 22(3): 600–607, https://doi.org/10.1093/jamia/ocu011.
  139. Luo J., Wu M., Zhao Y. Big data application in biomedical research and health care: a literature review. Biomed Inform Insights 2016; 8: 1–10, https://doi.org/10.4137/bii.s31559.
  140. Klann G., Szolovits P., Downs S.M., Schadow G. Decision support from local data: creating adaptive order menus from past clinician behavior. J Biomed Inform 2014; 48: 84–93, https://doi.org/10.1016/j.jbi.2013.12.005.
  141. Shin D., Arthur G., Popescu M., Korkin D., Shyu C.-R. Uncovering influence links in molecular knowledge networks to streamline personalized medicine. J Biomed Inform 2014; 52: 394–405, https://doi.org/10.1016/j.jbi.2014.08.003.
  142. Smolyar O.V. A method for calculating the required performance of local area network. Sovremennye tendentsii razvitiya nauki i tekhnologiy 2016; 6–1: 89–91.
  143. Shyr C., Kushniruk A., Wasserman W.W. Usability study of clinical exome analysis software: top lessons learned and recommendations. J Biomed Inform 2014; 51: 129–136, https://doi.org/10.1016/j.jbi.2014.05.004.
  144. Kuznetsov A.B., Shchegolkov L.A. Prognozirovanie rezultatov lecheniya patsienta v kriticheskom sostoyanii [Predicting the results of treatment of a patient in a critical condition]. Nizhny Novgorod: Izdatelstvo NizhGMA; 2017.
Kuznetsov A.B., Mukhin A.S., Simutis I.S., Shchegolkov L.A., Boyarinov G.А. Information Technology in Health Care: Information Retrieval, Processing, and Protection (Review). Sovremennye tehnologii v medicine 2018; 10(3): 213, https://doi.org/10.17691/stm2018.10.3.26


Journal in Databases

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg

SCImago Journal & Country Rank