Today: Dec 27, 2024
RU / EN
Last update: Dec 27, 2024
Drug-Induced Pathomorphosis of Glioblastoma 101.8 in Wistar Rats Treated with Doxorubicin Bound to Poly(lactide-co-glycolide) Nanoparticles

Drug-Induced Pathomorphosis of Glioblastoma 101.8 in Wistar Rats Treated with Doxorubicin Bound to Poly(lactide-co-glycolide) Nanoparticles

Fedoseeva V.V., Postovalova E.A., Khalansky A.S., Razzhivina V.A., Gelperina S.E., Makarova O.V.
Key words: experimental glioblastoma; doxorubicin; PLGA nanoparticles; poloxamer 188; drug-induced pathomorphosis.
2018, volume 10, issue 4, page 105.

Full text

html pdf
3774
2188

The aim of the investigation was to study drug-induced pathomorphosis of glioblastoma 101.8 in Wistar rats treated with different doxorubicin formulations: doxorubicin bound to polylactide nanoparticles and doxorubicin substance.

Materials and Methods. Doxorubicin bound to poly(lactic-co-glycolic acid) (PLGA) nanoparticles was used in the investigation. The study was performed on 33 male Wistar rats receiving doxorubicin (DOX) substance or doxorubicin-loaded nanoparticles (DOX-PLGA) at a dose of 1.5 mg/kg (body weight) on days 2, 5, and 8 post tumor transplantation. Lyophilized nanoparticles were resuspended in water (DOX-PLGA) or in 1% aqueous solution of poloxamer 188 (DOX-PLGA/P188) before intravenous administration. The number of mitotically dividing and dying tumor cells was counted, and the tumor cell renewal coefficient (CRC) was calculated for evaluation of pathomorphosis of glioblastoma 101.8 induced by doxorubicin, on day 14 post transplantation. The number and volume fraction of blood vessels in tumors were determined on histological sections stained with isolectin B4.

Results. On day 6 post treatment, the tumors in rats treated with all doxorubicin formulations exhibited an increase of cell death rate, decreased proliferative activity, and a lower indicator of CRC of tumor cells, compared to untreated animals. A decrease in the volume fraction and number of blood vessels in the tumors was also observed in the animals subjected to chemotherapy. According to the tumor pathomorphism parameters assessed in this study, the most effective formulation was DOX-PLGA/P188.

  1. Johnson D.R., Omuro A.M.P., Ravelo A., Sommer N., Guerin A., Ionescu-Ittu R., Shi S., Macalalad A., Uhm J.H. Overall survival in patients with glioblastoma before and after bevacizumab approval. Curr Med Res Opin 2018; 34(5): 813–820, https://doi.org/10.1080/03007995.2017.1392294.
  2. Furnari F.B., Fenton T., Bachoo R.M., Mukasa A., Stommel J.M., Stegh A., Hahn W.C., Ligon K.L., Louis D.N., Brennan C., Chin L., DePinho R.A., Cavenee W.K. Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev 2007; 21(21): 2683–2710, https://doi.org/10.1101/gad.1596707.
  3. Maeda H. Macromolecular therapeutics in cancer treatment: the EPR effect and beyond. J Control Release 2012; 164(2): 138–144, https://doi.org/10.1016/j.jconrel.2012.04.038.
  4. Malinovskaya Y., Melnikov P., Baklaushev V., Gabashvili A., Osipova N., Mantrov S., Ermolenko Y., Maksimenko O., Gorshkova M., Balabanyan V., Kreuter J., Gelperina S. Delivery of doxorubicin-loaded PLGA nanoparticles into U87 human glioblastoma cells. Int J Pharm 2017; 524(1–2): 77–90, https://doi.org/10.1016/j.ijpharm.2017.03.049.
  5. Hekmatara T., Bernreuther C., Khalansky A.S., Theisen A., Weissenberger J., Matschke J., Gelperina S., Kreuter J., Glatzel M. Efficient systemic therapy of rat glioblastoma by nanoparticle-bound doxorubicin is due to antiangiogenic effects. Clin Neuropathol 2009; 28(3): 153–164, https://doi.org/10.5414/npp28153.
  6. Thorn C.F., Oshiro C., Marsh S., Hernandez-Boussard T., McLeod H., Klein T.E., Altman R.B. Doxorubicin pathways: pharmacodynamics and adverse effects. Pharmacogenet Genomics 2011; 21(7): 440–446, https://doi.org/10.1097/fpc.0b013e32833ffb56.
  7. Fedoseeva V.V., Khalansky A.S., Mkhitarov V.A., Tsvetkov I.S., Malinovskaya Y.A., Maksimenko O.O., Gelperina S.E., Balabanyan V.Y., Razzhivina V.A., Gorelikov P.L., Mikhailova L.P., Makarova O.V. Anti-tumor activity of doxorubicin-loaded poly(lactide-co-glycolide) nanoparticles in the experimental glioblastoma. Klinicheskaya i eksperimental’naya morfologiya 2017; 2(22): 65–71.
  8. Gelperina S., Maksimenko O., Khalansky A., Vanchugova L., Shipulo E., Abbasova K., Berdiev R., Wohlfart S., Chepurnova N., Kreuter J. Drug delivery to the brain using surfactant-coated poly(lactide-co-glycolide) nanoparticles: influence of the formulation parameters. Eur J Pharm Biopharm 2010; 74(2): 157–163, https://doi.org/10.1016/j.ejpb.2009.09.003.
  9. Steiniger S.C., Kreuter J., Khalansky A.S., Skidan I.N., Bobruskin A.I., Smirnova Z.S., Severin S.E., Uhl R., Kock M., Geiger K.D., Gelperina S.E. Chemotherapy of glioblastoma in rats using doxorubicin-loaded nanoparticles. Int J Cancer 2004; 109(5): 759–767, https://doi.org/10.1002/ijc.20048.
  10. Kreuter J. Drug delivery to the central nervous system by polymeric nanoparticles: what do we know? Adv Drug Deliv Rev 2014; 71: 2–14, https://doi.org/10.1016/j.addr.2013.08.008.
  11. Moghimi S.M., Hunter A.C. Poloxamers and poloxamines in nanoparticle engineering and experimental medicine. Trends Biotechnol 2000; 18(10): 412–420, https://doi.org/10.1016/s0167-7799(00)01485-2.
  12. Westerterp M., van Westreenen H.L., Reitsma J.B., Hoekstra O.S., Stoker J., Fockens P., Jager P.L., Van Eck-Smit B.L., Plukker J.T., van Lanschot J.J., Sloof G.W. Esophageal cancer: CT, endoscopic US, and FDG PET for assessment of response to neoadjuvant therapy — systematic review. Radiology 2005; 236(3): 841–851, https://doi.org/10.1148/radiol.2363041042.
  13. Collection of experimental tumors of the nervous system and neural tumor cell lines. URL: http://ckp-rf.ru/usu/498710/.
  14. Avtandilov G.G. Morfologiya v patologii [Morphology in pathology]. Moscow: Meditsina; 1973; 277 p.
  15. Lushnikov E.F. Luchevoy patomorfoz opukholey cheloveka [Radiation pathomorphosis of human tumors]. Moscow: Meditsina; 1977; 328 p.
  16. Lavnikova G.A. Some regularities of radiation pathomorphosis of human tumors and their practical use. Vestnik AMN SSSR 1976, 6: 13–19.
  17. Patologoanatomicheskaya diagnostika opukholey cheloveka [Pathoanatomical diagnosis of human tumors]. Pod red. Kraevskogo N.A., Smolyannikova A.V., Sarkisova D.S. [Kraevskiy N.A., Smolyannikov A.V., Sarkisov D.S. (editors)]. Moscow: Meditsina; 1993; 560 p.
  18. Staunton M.J., Gaffney E.F. Tumor type is a determinant of susceptibility to apoptosis. Am J Clin Pathol 1995, 103(3): 300–307, https://doi.org/10.1093/ajcp/103.3.300.
  19. Kazantseva I.A., Gaganov L.E. The morphological parameters of cell regeneration in gastric carcinomas and their prognostic value. Arkhiv patologii 2014; 4: 3–8.
  20. Takagi H., Azuma K., Tsuka T., Imagawa T., Osaki T., Okamoto Y. Antitumor effects of high-temperature hyperthermia on a glioma rat model. Oncol Lett 2014; 7(4): 1007–1010, https://doi.org/10.3892/ol.2014.1852.
  21. Daumas-Duport C., Scheithauer B., O’Fallon J., Kelly P. Grading of astrocytomas. A simple and reproducible method. Cancer 1988; 62(10): 2152–2165, https://doi.org/10.1002/1097-0142(19881115)62:102152::aid-cncr28206210153.0.co;2-t.
  22. Lushnikov E.F., Abrosimov A.Yu. Gibel’ kletki (apoptoz) [Cell death (apoptosis)]. Moscow: Meditsina; 2001; 190 p.
  23. Chang F., Deere H., Mahadeva U., George S. Histopathologic examination and reporting of esophageal carcinomas following preoperative neoadjuvant therapy: practical guidelines and current issues. Am J Clin Pathol 2008; 129(2): 252–262, https://doi.org/10.1309/ccr3qn4874yjdjj7.
  24. Khalansky A.S., Hekmatara T., Bernreuther C., Rubtsov B.V., Kondakova L.I., Matschke J., Kreuter J., Glatzel M., Gelperina S.E., Shvets V.I. Morphological evaluation of the antitumour effect of the nanoparticle-bound doxorubicin in a rat glioblastoma model. Biofarmatsevticheskiy zhurnal 2011; 3(2): 41–50.
  25. Khalansky A.S., Kondakova L.I. Transplanted rat glioma 101.8. Biological characteristics. Klinicheskaya i eksperimental’naya morfologiya 2013; 4: 63–69.
  26. Wohlfart S., Khalansky A.S., Gelperina S., Maksimenko O., Bernreuther C., Glatzel M., Kreuter J. Efficient chemotherapy of rat glioblastoma using doxorubicin-loaded PLGA nanoparticles with different stabilizers. PLoS One 2011; 6(5): e19121, https://doi.org/10.1371/journal.pone.0019121.
Fedoseeva V.V., Postovalova E.A., Khalansky A.S., Razzhivina V.A., Gelperina S.E., Makarova O.V. Drug-Induced Pathomorphosis of Glioblastoma 101.8 in Wistar Rats Treated with Doxorubicin Bound to Poly(lactide-co-glycolide) Nanoparticles. Sovremennye tehnologii v medicine 2018; 10(4): 105, https://doi.org/10.17691/stm2018.10.4.12


Journal in Databases

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg

SCImago Journal & Country Rank