Today: Nov 25, 2024
RU / EN
Last update: Oct 30, 2024
Virtual Reality Technology in Complex Medical Rehabilitation of Patients with Disabilities (Review)

Virtual Reality Technology in Complex Medical Rehabilitation of Patients with Disabilities (Review)

Volovik M.G., Borzikov V.V., Kuznetsov A.N., Bazarov D.I., Polyakova A.G.
Key words: virtual reality; rehabilitation; motor functions.
2018, volume 10, issue 4, page 173.

Full text

html pdf
4131
2475

The review is devoted to integration of innovative virtual reality technologies in the complex of medical rehabilitation of patients with disabilities. The analysis of data presented in modern domestic and foreign literature proves the effectiveness of using these technologies for recovery of impaired motor functions in patients of various ages with nervous and musculoskeletal system pathologies and gives evidence of their corrective effect on neurophysiological motor deficiency. Evaluation of the achieved results from the perspective of evidence-based medicine confirms the feasibility of using a personalized approach to targeting and controlling the dosage of virtual technologies in the complex of rehabilitation measures.

  1. Bryantseva N.V., Sulim O.N. Social and legal issues for people with disabilities. Uspekhi v khimii i khimicheskoy tekhnologii 2012; 9(138): 55–58.
  2. Razumov A.N., Melnikova E.A. The modern approaches to the prognostication of rehabilitation of the patients after stroke on an individual basis: a review of the literature and the results of original investigations. Voprosy kurortologii, fizioterapii i lechebnoi fizicheskoi kul’tury 2015; 92(6): 11–16, https://doi.org/10.17116/kurort2015611-16.
  3. Saposnik G., Levin M.; Outcome Research Canada (SORCan) Working Group. Virtual reality in stroke rehabilitation a meta-analysis and implications for clinicians. Stroke 2011; 42(5): 1380–1386, https://doi.org/10.1161/strokeaha.110.605451.
  4. Legkaya E.F., Khodasevich L.S., Polyakova A.V. The informational technologies for the comprehensive rehabilitation of the patients presenting with juvenile cerebral palsy (a review). Voprosy kurortologii, fizioterapii i lechebnoi fizicheskoi kul’tury 2016; 93(2): 53–58, https://doi.org/10.17116/kurort2016253-58.
  5. Bonnechère B., Jansen B., Omelina L., Degelaen M., Wermenbol V., Rooze M., Van Sint Jan S. Can serious games be incorporated with conventional treatment of children with cerebral palsy? A review. Res Dev Disabil 2014; 35(8): 1899–1913, https://doi.org/10.1016/j.ridd.2014.04.016.
  6. Chen Y.P, Lee S.Y., Howard A.M. Effect of virtual reality on upper extremity function in children with cerebral palsy: a meta-analysis. Pediatr Phys Ther 2014; 26(3): 289–300, https://doi.org/10.1097/pep.0000000000000046.
  7. Dascal J., Reid M., IsHak W.W., Spiegel B., Recacho J., Rosen B., Danovitch I. Virtual reality and medical inpatients: a systematic review of randomized, controlled trials. Innov Clin Neurosci 2017; 14(1–2): 14–21.
  8. Miller K.J., Adair B.S., Pearce A.J., Said C.M., Ozanne E., Morris M.M. Effectiveness and feasibility of virtual reality and gaming system use at home by older adults for enabling physical activity to improve health-related domains: a systematic review. Age Ageing 2014; 43(2): 188–195, https://doi.org/10.1093/ageing/aft194.
  9. Sidiakina I.V., Dobrushina O.R., Liadov K.V., Shapovalenko T.V., Romashin O.V. The role of evidence-based medicine in the neurorehabilitation: the innovative technologies (a review). Voprosy kurortologii, fizioterapii i lechebnoi fizicheskoi kul’tury 2015; 92(3): 53–56, https://doi.org/10.17116/kurort2015353-56.
  10. Wang Q., Markopoulos P., Yu B., Chen W., Timmermans A. Interactive wearable systems for upper body rehabilitation: a systematic review. J Neuroeng Rehabil 2017; 14(1): 20, https://doi.org/10.1186/s12984-017-0229-y.
  11. Riener R., Harders M. Virtual reality in medicine. London: Springer; 2012, https://doi.org/10.1007/978-1-4471-4011-5.
  12. Abadía M.F., Quintana M.S., Calvo P.Á.M. Application of topographical capture techniques for modelling virtual reality: from the static object to the human figure. In: Virtual technologies for business and industrial applications: innovative and synergistic approaches. IGI Global; 2011; p. 181–200, https://doi.org/10.4018/9781615206315.ch011.
  13. Moya S., Grau S., Tost D., Campeny R., Ruiz M. Animation of 3D avatars for rehabilitation of the upper limbs. In: Third International Conference on Games and Virtual Worlds for Serious Applications. IEEE; 2011; p. 168–171, https://doi.org/10.1109/vs-games.2011.32.
  14. Zimmerli L., Jacky M., Lünenburger L., Riener R., Bolliger M. Increasing patient engagement during virtual reality-based motor rehabilitation. Arch Phys Med Rehabil 2013; 94(9): 1737–1746, https://doi.org/10.1016/j.apmr.2013.01.029.
  15. Pietrzak E., Cotea C., Pullman S. Using commercial video games for upper limb stroke rehabilitation: is this the way of the future? Top Stroke Rehabil 2014; 21(2): 152–162, https://doi.org/10.1310/tsr2102-152.
  16. Iamsakul K., Pavlovcik A.V., Calderon J.I., Sanderson L.M. Project heaven: preoperative training in virtual reality. Surg Neurol Int 2017; 8: 59, https://doi.org/10.4103/sni.sni_371_16.
  17. Carr J.H., Shepherd R.B. Motor relearning programme for stroke. Rockville: Aspen Publishers; 1983.
  18. Kamiya J. The first communications about operant conditioning of the EEG. J Neurother 2011; 15(1): 65–73, https://doi.org/10.1080/10874208.2011.545764.
  19. Lemson R. Virtual therapy of anxiety disorders. CyberEdge Journal 1994; 4(2): 1–28.
  20. Williford J., Hodges L., North M., North S. Relative effectiveness of virtual environment desensitization and imaginal desensitization in the treatment of acrophobia. In: Proceedings graphic interface. Toronto, ON: Canadian Human-Computer Communications Society; 1993; p. 162.
  21. Rothbaum B.O., Hodges L.F., Kooper R., Opdyke D., Williford J.S., North M. Effectiveness of computer-generated (virtual reality) graded exposure in the treatment of acrophobia. Am J Psychiatry 1995; 152(4): 626–628, https://doi.org/10.1176/ajp.152.4.626.
  22. Leibovici V., Magora F., Cohen S., Ingber A. Effects of virtual reality immersion and audiovisual distraction techniques for patients with pruritus. Pain Res Manage 2009; 14(4): 283–286, https://doi.org/10.1155/2009/178751.
  23. Keefe F.J., Huling D.A., Coggins M.J., Keefe D.F., Rosenthal M.Z., Herr N.R. Virtual reality for persistent pain: a new direction for behavioral pain management. Pain 2012; 153(11): 2163–2166, https://doi.org/10.1016/j.pain.2012.05.030.
  24. Jones T., Moore T., Choo J. The impact of virtual reality on chronic pain. PLoS One 2016; 11(12): e0167523, https://doi.org/10.1371/journal.pone.0167523.
  25. Tegza V.Y., Dyakonov I.F., Ovchinnikov B.V., Shpilenya L.S., Palekhova O.V. Modern and advanced technology medical and psychological rehabilitation of military personnel. Medline.ru 2015; 16: 659–668. URL: http://www.medline.ru/public/art/tom16/art60.html.
  26. Lewis G.N., Rosie J.A. Virtual reality games for movement rehabilitation in neurological conditions: how do we meet the needs and expectations of the users? Disabil Rehabil 2012; 34(22): 1880–1886, https://doi.org/10.3109/09638288.2012.670036.
  27. Georgescu A.L., Kuzmanovic B., Roth D., Bente G., Vogeley K. The use of virtual characters to assess and train nonverbal communication in high-functioning autism. Front Hum Neurosci 2014; 8: 807, https://doi.org/10.3389/fnhum.2014.00807.
  28. Parsons S. Authenticity in virtual reality for assessment and intervention in autism: a conceptual review. Educational Research Review 2016; 19: 138–157, https://doi.org/10.1016/j.edurev.2016.08.001.
  29. Forbes P.A.G., Pan X., Hamilton A.F. de C. Reduced mimicry to virtual reality avatars in autism spectrum disorder. J Autism Dev Disord 2016; 46(12): 3788–3797, https://doi.org/10.1007/s10803-016-2930-2.
  30. Duffield T.C., Parsons T.D., Landry A., Karam S., Otero T., Mastel S., Hall T.A. Virtual environments as an assessment modality with pediatric ASD populations: a brief report. Child Neuropsychol 2017, 24(8): 1129–1136, https://doi.org/10.1080/09297049.2017.1375473.
  31. Dockx K., Bekkers E.M.J., Van den Bergh V., Ginis P., Rochester L., Hausdorff J.M., Mirelman A., Nieuwboer A. Virtual reality for rehabilitation in Parkinson’s disease. Cochrane Database Syst Rev 2016; 12: CD010760, https://doi.org/10.1002/14651858.cd010760.pub2.
  32. García-Betances R.I., Arredondo Waldmeyer M.T., Fico G., Cabrera-Umpiérrez M.F. A succinct overview of virtual reality technology use in Alzheimer’s disease. Front Aging Neurosci 2015; 7: 80, https://doi.org/10.3389/fnagi.2015.00080.
  33. Massetti T., Trevizan I.L., Arab C., Favero F.M., Ribeiro-Papa D.C., de Mello Monteiro C.B. Virtual reality in multiple sclerosis — a systematic review. Mult Scler Relat Disord 2016; 8: 107–112, https://doi.org/10.1016/j.msard.2016.05.014.
  34. Wüest S., van de Langenberg R., de Bruin E.D. Design considerations for a theory-driven exergame-based rehabilitation program to improve walking of persons with stroke. Eur Rev Aging Phys Act 2014; 11(2): 119–129, https://doi.org/10.1007/s11556-013-0136-6.
  35. Lledó L.D., Díez J.A., Bertomeu-Motos A., Ezquerro S., Badesa F.J., Sabater-Navarro J.M., García-Aracil N. A comparative analysis of 2D and 3D tasks for virtual reality therapies based on robotic-assisted neurorehabilitation for post-stroke patients. Front Aging Neurosci 2016; 8: 205, https://doi.org/10.3389/fnagi.2016.00205.
  36. Schmid L., Glässel A., Schuster-Amft C. Therapists’ perspective on virtual reality training in patients after stroke: a qualitative study reporting focus group results from three hospitals. Stroke Res Treat 2016; 2016: 6210508, https://doi.org/10.1155/2016/6210508.
  37. Saposnik G. Virtual reality in stroke rehabilitation. In: Ovbiagele B. (editor). Ischemic stroke therapeutics. Springer, Cham; 2016; p. 225–233, https://doi.org/10.1007/978-3-319-17750-2_22.
  38. Brunner I., Skouen J.S., Hofstad H., Aßmus J., Becker F., Sanders A.-M., Pallesen H., Kristensen L.Q., Michielsen M., Thijs L., Verheyden G. Virtual reality training for upper extremity in subacute stroke (VIRTUES). Neurology 2017; 89(24): 2413–2421, https://doi.org/10.1212/wnl.0000000000004744.
  39. Rooij M., Lobel A., Owen H., Smit N., Granic I. DEEP: a biofeedback virtual reality game for children atrisk for anxiety. In: Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems — CHI EA ’16. ACM Press; 2016, p. 1989–1997, https://doi.org/10.1145/2851581.2892452.
  40. Chernikova L.A., Piradov M.A., Suponeva N.A., Chervyakov A.V., Klochkov A.S., Mokienko O.A., Lyukmanov R.Kh., Poydasheva A.G., Avdyunina I.A. Vysokotekhnologichnye metody neyroreabilitatsii pri zabolevaniyakh nervnoy sistemy. V kn.: Nevrologiya XXI veka: diagnosticheskie, lechebnye i issledovatel’skie tekhnologii [High-tech methods of neurorehabilitation for diseases of the nervous system. In: Neurology of the XXI century: diagnostic, therapeutic and research technologies]. Pod red. Piradova M.A., Illarioshkina S.N., Tanashyan M.M. [Piradov M.A., Illarioshkin S.N., Tanashyan M.M. (editors)]. Moscow: ATMO; 2015; p. 274–331.
  41. Chernikova L.A., Suponeva N.A., Klochkov A.S., Khizhnikova A.E., Lyukmanov R.H., Gnedovskaya E.V., Yankevich D.S., Piradov M.A. Robotic and mechanotherapeutic technology to restore the functions of the upper limbs: prospects for development (review). Sovremennye tehnologii v medicine 2016; 8(4): 222–230, https://doi.org/10.17691/stm2016.8.4.27.
  42. Gordleeva S.Yu., Lukoyanov M.V., Mineev S.A., Khoruzhko M.A., Mironov V.I., Kaplan A.Ya., Kazantsev V.B. Exoskeleton control system based on motor-imaginary brain–computer interface. Sovremennye tehnologii v medicine 2017; 9(3): 31–38, https://doi.org/10.17691/stm2017.9.3.04.
  43. Moreira M.C., de Amorim Lima A.M., Ferraz K.M., Benedetti Rodrigues M.A. Use of virtual reality in gait recovery among post stroke patients — a systematic literature review. Disabil Rehabil Assist Technol 2013; 8(5): 357–362, https://doi.org/10.3109/17483107.2012.749428.
  44. Laver K., George S., Thomas S., Deutsch J.E., Crotty M. Virtual reality for stroke rehabilitation. Stroke 2012; 43(2), https://doi.org/10.1161/strokeaha.111.642439.
  45. Turolla A., Dam M., Ventura L., Tonin P., Agostini M., Zucconi C., Kiper P., Cagnin A., Piron L. Virtual reality for the rehabilitation of the upper limb motor function after stroke: a prospective controlled trial. J Neuroeng Rehabil 2013; 10: 85, https://doi.org/10.1186/1743-0003-10-85.
  46. Piggott L., Wagner S., Ziat M. Haptic neurorehabilitation and virtual reality for upper limb paralysis: a review. Crit Rev Biomed Eng 2016; 44(1–02): 1–32, https://doi.org/10.1615/critrevbiomedeng.2016016046.
  47. Regenbrecht H., Hoermann S., McGregoret G., Dixon B., Franz E., Ott C., Hale L., Schubert T., Hoermann J. Visual manipulations for motor rehabilitation. Computers & Graphics 2012; 36(7): 819–834, https://doi.org/10.1016/j.cag.2012.04.012.
  48. Dimbwadyo-Terrer I., Gil-Agudo A., Segura-Fragoso A., de los Reyes-Guzmán A., Trincado-Alonso F., Piazza S., Polonio-López B. Effectiveness of the virtual reality system Toyra on upper limb function in people with tetraplegia: a pilot randomized clinical trial. Biomed Res Int 2016; 2016: 6397828, https://doi.org/10.1155/2016/6397828.
  49. Grimm F., Naros G., Gharabaghi A. Closed-loop task difficulty adaptation during virtual reality reach-to-grasp training assisted with an exoskeleton for stroke. Front Neurosci 2016; 10: 518, https://doi.org/10.3389/fnins.2016.00518.
  50. Bohil C.J., Alicea B., Biocca F.A. Virtual reality in neuroscience research and therapy. Nat Rev Neurosci 2011; 12(12): 752–762, https://doi.org/10.1038/nrn3122.
  51. Luu T.P., He Y., Brown S., Nakagome S., Contreras-Vidal J.L. A closed-loop brain computer interface to a virtual reality avatar: gait adaptation to visual kinematic perturbations. In: International Conference on Virtual Rehabilitation (ICVR). IEEE; 2015, p. 30–37, https://doi.org/10.1109/icvr.2015.7358598.
  52. Faria A.L., Andrade A., Soares L., Badia S.B. Benefits of virtual reality based cognitive rehabilitation through simulated activities of daily living: a randomized controlled trial with stroke patients. J Neuroeng Rehabil 2016; 13(1): 96–107, https://doi.org/10.1186/s12984-016-0204-z.
  53. Teo W.P., Muthalib M., Yamin S., Hendy A.M., Bramstedt K., Kotsopoulos E., Perrey S., Ayaz H. Does a combination of virtual reality, neuromodulation and neuroimaging provide a comprehensive platform for neurorehabilitation? — A narrative review of the literature. Front Hum Neurosci 2016; 10: 284, https://doi.org/10.3389/fnhum.2016.00284.
  54. Pereira M.E., Rueda M.F., Diego A.I.M., de la Cuerda R.C., de Mauro A., Miangolarra Page J.C. Use of virtual reality systems as proprioception method in cerebral palsy: clinical practice guideline. Neurologia 2014; 29(9): 550–559, https://doi.org/10.1016/j.nrleng.2011.12.011.
  55. Yeh S.C., Huang M.C., Wang P.C., Fang T.Y., Su M.C., Tsai P.Y., Rizzo A. Machine learning-based assessment tool for imbalance and vestibular dysfunction with virtual reality rehabilitation system. Comput Methods Programs Biomed 2014; 16(3): 311–318, https://doi.org/10.1016/j.cmpb.2014.04.014.
  56. You S.H., Jang S.H., Kim Y.H., Kwon Y.H., Barrow I., Hallett M. Cortical reorganization induced by virtual reality therapy in a child with hemiparetic cerebral palsy. Dev Med Child Neurol 2005; 47: 628–635, https://doi.org/10.1017/s0012162205001234.
  57. Basso Moro S., Bisconti S., Muthalib M., Spezialetti M., Cutini S., Ferrari M., Placidi G., Quaresima V. A semi-immersive virtual reality incremental swing balance task activates prefrontal cortex: a functional near-infrared spectroscopy study. Neuroimage 2014; 85: 451–460, https://doi.org/10.1016/j.neuroimage.2013.05.031.
  58. Bower K.J., Louie J., Landesrocha Y., Seedy P., Gorelik A., Bernhardt J. Clinical feasibility of interactive motion-controlled games for stroke rehabilitation. J Neuroeng Rehabil 2015; 12(1): 63, https://doi.org/10.1186/s12984-015-0057-x.
  59. Levac D.E., Glegg S.M.N., Sveistrup H., Colquhoun H., Miller P., Finestone H., De Paul V., Harris J.E., Velikonja D. Promoting therapists’ use of motor learning strategies within virtual reality-based stroke rehabilitation. PLoS One 2016; 11(12): e0168311, https://doi.org/10.1371/journal.pone.0168311.
  60. Chen L., Lo W.L.A., Mao Y.R., Ding M.H., Lin Q.L., Li H., Zhao J.L., Xu Z.Q., Bian R.H., Huang D.F. Effect of virtual reality on postural and balance control in patients with stroke: a systematic literature review. Biomed Res Int 2016; 2016: 7309272, https://doi.org/10.1155/2016/7309272.
  61. Cameirão M.S., Badia S.B., Duarte E., Frisoli A., Verschure P.F. The combined impact of virtual reality neurorehabilitation and its interfaces on upper extremity functional recovery in patients with chronic stroke. Stroke 2012; 43(10): 2720–2728, https://doi.org/10.1161/strokeaha.112.653196.
  62. Yeh S.C., Lee S.H., Chan R.C., Chen S., Rizzo A. A virtual reality system integrated with robot-assisted haptics to simulate pinch-grip task: motor ingredients for the assessment in chronic stroke. Neurorehabilitation 2014; 35(3): 435–449.
  63. Lloréns R., Gil-Gómez J.A., Alcañiz M., Colomer C., Noé E. Improvement in balance using a virtual reality-based stepping exercise: a randomized controlled trial involving individuals with chronic stroke. Clin Rehabil 2015; 29(3): 261–268, https://doi.org/10.1177/0269215514543333.
  64. Bao X., Mao Y., Lin Q., Qiu Y., Chen S., Li L., Cates R.S., Zhou S., Huang D. Mechanism of kinect-based virtual reality training for motor functional recovery of upper limbs after subacute stroke. Neural Regen Res 2013; 8(31): 2904–2913.
  65. Iosa M., Morone G., Fusco A., Castagnoli M., Fusco F.R., Pratesi L., Paolucci S. Leap motion controlled videogame-based therapy for rehabilitation of elderly patients with subacute stroke: a feasibility pilot study. Top Stroke Rehabil 2015; 22(4): 306–316, https://doi.org/10.1179/1074935714z.0000000036.
  66. Stockley R.C., O’Connor D.A., Smith P., Moss S., Allsop L., Edge W. A mixed methods small pilot study to describe the effects of upper limb training using a virtual reality gaming system in people with chronic stroke. Rehabil Res Pract 2017; 2017: 9569178, https://doi.org/10.1155/2017/9569178.
  67. Yin C.W., Sien N.Y., Ying L.A., Chung S.F., Tan May Leng D. Virtual reality for upper extremity rehabilitation in early stroke: a pilot randomized controlled trial. Clin Rehabil 2014; 28(11): 1107–1114, https://doi.org/10.1177/0269215514532851.
  68. Kiper P., Agostini M., Luque-Moreno C., Tonin P., Turolla A. Reinforced feedback in virtual environment for rehabilitation of upper extremity dysfunction after stroke: preliminary data from a randomized controlled trial. Biomed Res Int 2014; 2014: 752128, https://doi.org/10.1155/2014/752128.
  69. Lohse K.R., Hilderman C.G., Cheung K.L., Tatla S., Van Der Loos H.F. Virtual reality therapy for adults post-stroke: a systematic review and meta-analysis exploring virtual environments and commercial games in therapy. PLoS One 2014; 9(3): e93318, https://doi.org/10.1371/journal.pone.0093318.
  70. Thomson K., Pollock A., Bugge C., Brady M. Commercial gaming devices for stroke upper limb rehabilitation: a systematic review. Int J Stroke 2014; 9(4): 479–488, https://doi.org/10.1111/ijs.12263.
  71. Yin C., Hsueh Y.H., Yeh C.Y., Lo H.C., Lan Y.T. A virtual reality-cycling training system for lower limb balance improvement. Biomed Res Int 2016; 2016: 9276508, https://doi.org/10.1155/2016/9276508.
  72. Flowers A., Herve J.-Y. BioPresence: a virtual reality biofeedback system. 2018.
  73. Chernikova L.A., Ioffe M.E., Kurganskaya M.E., Mokienko O.A., Katsuba N.A., Ustinova K.I., Prokopenko R.A., Frolov A.A. The use of the virtual reality technology for the restoration of movements of the paretic hand after stroke. Fizioterapiya, bal’neologiya, reabilitatsiya 2011; 3: 3–7.
  74. Khizhnikova A.E., Klochkov A.S., Kotov-Smolenskiy A.M., Suponeva N.A., Chernikova L.A. Virtual reality as an upper limb rehabilitation approach. Human Physiology 2017; 43(8): 855–862, https://doi.org/10.1134/s0362119717080035.
  75. Zakharov A.V., Pyatin V.F., Kolsanov A.V., Poverennova I.E., Segreeva M.S., Khivintseva E.V., Korovina E.S., Kucepalova G.U. Using virtual reality as a method of accelerated rehabilitation among the patients after stroke. Nauka i innovatsii v meditsine 2016; 3: 62–66.
  76. Galvin J., Levac D. Facilitating clinical decision-making about the use of virtual reality within pediatric motor rehabilitation: describing and classifying virtual reality systems. Dev Neurorehabil 2011; 14(2): 112–122, https://doi.org/10.3109/17518423.2010.535805.
  77. de Oliveira J.M., Fernandes R.C., Pinto C.S., Pinheiro P.R., Ribeiro S., de Albuquerque V.H. Novel virtual environment for alternative treatment of children with cerebral palsy. Comput Intell Neurosci 2016; 2016: 8984379, https://doi.org/10.1155/2016/8984379.
  78. Cho C., Hwang W., Hwang S., Chung Y. Treadmill training with virtual reality improves gait, balance, and muscle strength in children with cerebral palsy. Tohoku J Exp Med 2016; 238(3): 213–218, https://doi.org/10.1620/tjem.238.213.
  79. Howcroft J., Klejman S., Fehlings D., Wright V., Zabjek K., Andrysek J., Biddiss E. Active video game play in children with cerebral palsy: potential for physical activity promotion and rehabilitation therapies. Arch Phys Med Rehabil 2012; 93(8): 1448–1456, https://doi.org/10.1016/j.apmr.2012.02.033.
  80. Ni L., Fehlings D., Biddiss E. Clinician and child assessment of virtual reality therapy games for motor rehabilitation of cerebral palsy. Arch Phys Med Rehabil 2014; 95(10): e105, https://doi.org/10.1016/j.apmr.2014.07.323.
  81. Gagliardo P., Ferreiro T., Izquierdo R., Mas G., Penades V., Chirivella J. NeuroAtHome: a software platform of clinically designed videogames specifically designed for the motor rehabilitation of stroke patients. Abstracts 2014. Brain Injury 2014; 28(5–6): 517–878, https://doi.org/10.3109/02699052.2014.892379.
  82. Chen Y.P., Garcia-Vergara S., Howard A.M. Effect of a home-based virtual reality intervention for children with cerebral palsy using super pop VR evaluation metrics: a feasibility study. Rehabil Res Pract 2015; 2015: 812348, https://doi.org/10.1155/2015/812348.
  83. Green D., Wilson P.H. Use of virtual reality in rehabilitation of movement in children with hemiplegia — a multiple case study evaluation. Disabil Rehabil 2012; 34(7): 593–604, https://doi.org/10.3109/09638288.2011.613520.
  84. Ongvisatepaiboon K., Chan J.H., Vanijja V. Smartphone-based tele-rehabilitation system for frozen shoulder using a machine learning approach. In: 2015 IEEE Symposium Series on Computational Intelligence. IEEE; 2016, https://doi.org/10.1109/ssci.2015.120.
  85. Nikolenko N., Goncharova O.V., Artemyeva S.B., Achkasov E.E., Litvinova E.B. Use of virtual reality game systems in rehabilitation of children with progressive muscular dystrophies. Sportivnaya meditsina: nauka i praktika 2014; 4: 90–97.
  86. Rahman Y.A., Hoque M.M., Zinnah K.I., Bokhary I.M. Helping-hand: a data glove technology for rehabilitation of monoplegia patients. In: 9th International Forum on Strategic Technology (IFOST). IEEE; 2014; p. 199–204, https://doi.org/10.1109/ifost.2014.6991104.
  87. Roosink M., Mercier C. Virtual feedback for motor and pain rehabilitation after spinal cord injury. Spinal Cord 2014; 52(12): 860–866, https://doi.org/10.1038/sc.2014.160.
  88. Pozeg P., Palluel E., Ronchi R., Solca M., Al-Khoudairy A.W., Jordan X., Kassouha A., Blanke O. Virtual reality improves embodiment and neuropathic pain caused by spinal cord injury. Neurology 2017; 89(18): 1894–1903, https://doi.org/10.1212/wnl.0000000000004585.
  89. Roosink M., Robitaille N., Jackson P.L., Bouyer L.J., Mercier C. Interactive virtual feedback improves gait motor imagery after spinal cord injury: an exploratory study. Restor Neurol Neurosci 2016; 34(2): 227–235, https://doi.org/10.3233/rnn-150563.
  90. Villiger M., Bohli D., Kiper D., Pyk P., Spillmann J., Meilick B., Curt A., Hepp-Reymond M.C., Hotz-Boendermaker S., Eng K. Virtual reality-augmented neurorehabilitation improves motor function and reduces neuropathic pain in patients with incomplete spinal cord injury. Neurorehabil Neural Repair 2013; 27(8): 675–683, https://doi.org/10.1177/1545968313490999.
  91. Mao Y., Chen P., Li L., Huang D. Virtual reality training improves balance function. Neural Regen Res 2014; 9(17): 1628–1634, https://doi.org/10.4103/1673-5374.141795.
  92. Nas K., Yazmalar L., Şah V., Aydin A., Öneş K. Rehabilitation of spinal cord injury. World J Orthop 2015; 6(1): 8–16, https://doi.org/10.5312/wjo.v6.i1.8.
  93. Rammo R., Schwalb J.M. Comment: is virtual reality a useful adjunct to rehabilitation after spinal cord injury? Neurology 2017; 89(18): 1902, https://doi.org/10.1212/wnl.0000000000004607.
  94. Sung W.H., Chiu T.Y., Tsai W.W., Cheng H., Chen J.J. The effect of virtual reality-enhanced driving protocol in patients following spinal cord injury. J Chin Med Assoc 2012; 75(11): 600–605, https://doi.org/10.1016/j.jcma.2012.08.004.
  95. Wright W.G., McDevitt J., Appiah-Kubi K.O. A portable virtual reality balance device to assess mild traumatic brain injury symptoms: a pilot validation study. In: International Conference on Virtual Rehabilitation (ICVR). IEEE; 2015, https://doi.org/10.1109/icvr.2015.7358591.
  96. Levin M.F., Weiss P.L., Keshner E.A. Emergence of virtual reality as a tool for upper limb rehabilitation: incorporation of motor control and motor learning principles. Phys Ther 2015; 95(3): 415–425, https://doi.org/10.2522/ptj.20130579.
  97. Levin M., Magdalon E.C., Michaelsen S.M., Quevedo A. Quality of grasping and the role of haptics in a 3D immersive virtual reality environment in individuals with stroke. IEEE Trans Neural Syst Rehabil Eng 2015; 23(6): 1047–1055, https://doi.org/10.1109/tnsre.2014.2387412.
  98. Fedotchev А.I., Parin S.B., Polevaya S.A., Velikova S.D. Brain–computer interface and neurofeedback technologies: current state, problems and clinical prospects (review). Sovremennye tehnologii v medicine 2017; 9(1): 175–184, https://doi.org/10.17691/stm2017.9.1.22.
  99. Lee M., Suh D., Son J., Kim J., Eun S.D., Yoon B.C. Patient perspectives on virtual reality-based rehabilitation after knee surgery: importance of level of difficulty. J Rehabil Res Dev 2016; 53(2): 239–252, https://doi.org/10.1682/jrrd.2014.07.0164.
  100. Lee S.H., Yeh S.C., Chan R.C., Chen S., Yang G., Zheng L.R. Motor ingredients derived from a wearable sensor-based virtual reality system for frozen shoulder rehabilitation. Biomed Res Int 2016; 2016: 7075464, https://doi.org/10.1155/2016/7075464.
  101. Gokeler A., Bisschop M., Myer G.D., Benjaminse A., Dijkstra P.U., van Keeken H.G., van Raay J.J., Burgerhof J.G., Otten E. Immersive virtual reality improves movement patterns in patients after ACL reconstruction: implications for enhanced criteria based return-to-sport rehabilitation. Knee Surg Sports Traumatol Arthrosc 2016; 24(7): 2280–2286, https://doi.org/10.1007/s00167-014-3374-x.
  102. Muñoz J.E., Paulino T., Vasanth H., Baras K. PhysioVR: a novel mobile virtual reality framework for physiological computing. In: IEEE 18th International Conference on e-Health Networking, Applications and Services (Healthcom). IEEE; 2016, https://doi.org/10.1109/healthcom.2016.7749512.
  103. Muñoz J.E., Gouveia E.R., Cameirão M., Bermudez I., Badia S. The biocybernetic loop engine: an integrated tool for creating physiologically adaptive videogames. In: Proceedings of the 4th International Conference on Physiological Computing Systems. Madrid, Spain; 2017; p. 45−54, https://doi.org/10.5220/0006429800450054.

Volovik M.G., Borzikov V.V., Kuznetsov A.N., Bazarov D.I., Polyakova A.G. Virtual Reality Technology in Complex Medical Rehabilitation of Patients with Disabilities (Review). Sovremennye tehnologii v medicine 2018; 10(4): 173, https://doi.org/10.17691/stm2018.10.4.21


Journal in Databases

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg

SCImago Journal & Country Rank