Today: Jan 22, 2025
RU / EN
Last update: Dec 27, 2024
Language of Music and Its Psychophysical Foundations (Review)

Language of Music and Its Psychophysical Foundations (Review)

Korsakova-Kreyn M.
Key words: neurophysiological correlates of musical perception; mechanisms of music perception; music therapy.
2019, volume 11, issue 1, page 40.

Full text

html pdf
1825
1790

Application of music in rehabilitation medicine requires an understanding of the mechanisms of music perception. This article discusses differences in character of the basic melodic elements and addresses some of the specifics of tonal space. Colloquially, music is called the language of emotion. Bearing in mind that high-level cognitive functioning in humans is inseparable from affective consciousness, investigating the mechanisms of emotional processing belongs to an important area of cognitive sciences. Studying music perception can help to advance methods of music therapy and to elucidate major aspects of human consciousness.

  1. Blood A.J., Zatorre R.J. Intensely pleasurable responses to music correlate with activity in brain regions implicated in reward and emotion. Proc Natl Acad Sci U S A 2001; 98(20): 11818–11823, https://doi.org/10.1073/pnas.191355898.
  2. Berridge K.C., Kringelbach M.L. Pleasure systems in the brain. Neuron 2015; 86(3): 646–664, https://doi.org/10.1016/j.neuron.2015.02.018.
  3. Panksepp J., Bernatzky G. Emotional sounds and the brain: the neuro-affective foundations of musical appreciation. Behav Processes 2002; 60(2): 133–155, https://doi.org/10.1016/s0376-6357(02)00080-3.
  4. Sachs M.E., Ellis R.J., Schlaug G., Loui P. Brain connectivity reflects human aesthetic responses to music. Soc Cogn Affect Neurosci 2016; 11(6): 884–891, https://doi.org/10.1093/scan/nsw009.
  5. Chanda M.L., Levitin D.J. The neurochemistry of music. Trends Cogn Sci 2013; 17(4): 179–93, https://doi.org/10.1016/j.tics.2013.02.007.
  6. Bernardi L., Porta C., Sleight P. Cardiovascular, cerebrovascular, and respiratory changes induced by different types of music in musicians and non-musicians: the importance of silence. Heart 2005; 92(4): 445–452, https://doi.org/10.1136/hrt.2005.064600.
  7. Koelsch S., Siebel W.A. Towards a neural basis of music perception. Trends Cogn Sci 2005; 9(12): 578–584, https://doi.org/10.1016/j.tics.2005.10.001.
  8. Iwanaga M., Moroki Y. Subjective and physiological responses to music stimuli controlled over activity and preference. J Music Ther 1999; 36(1): 26–38, https://doi.org/10.1093/jmt/36.1.26.
  9. Krumhansl C.L. An exploratory study of musical emotions and psychophysiology. Can J Exp Psychol 1997; 51(4): 336–353, https://doi.org/10.1037/1196-1961.51.4.336.
  10. Trappe H.-J. Music and medicine: the effects of music on the human being. Applied Cardiopulmonary Pathophysiology 2012; 16: 133–142.
  11. Cannon W.B. Bodily changes in pain, hunger, fear and rage, an account of recent researches into the function of emotional excitement. New York and London: D. Appleton and Co.; 1915.
  12. Ekman P., Cordaro D. What is meant by calling emotions basic. Emotion Review 2011; 3(4): 364–370, https://doi.org/10.1177/1754073911410740.
  13. Solntsev V.M. K voprosu o semantike ili yazykovom znachenii (vmesto predisloviya). V kn.: Problemy semantiki [To the question of semantics or linguistic value (in lieu of a preface). In: Problems of semantics]. Moscow: Nauka; 1974.
  14. Handbook of music and emotion: theory, research, applications. Juslin P.N., Sloboda J.A. (editors). New York: Oxford University Press; 2010.
  15. Virtala P., Huotilainen M., Partanen E., Fellman V., Tervaniemi M. Newborn infants’ auditory system is sensitive to Western music chord categories. Front Psychol 2013; 4: 492, https://doi.org/10.3389/fpsyg.2013.00492.
  16. Granier-Deferre C., Bassereau S., Ribeiro A., Jacquet A.-Y., DeCasper A.J. A melodic contour repeatedly experienced by human near-term fetuses elicits a profound cardiac reaction one month after birth. PLoS One 2011; 6(2): e17304, https://doi.org/10.1371/journal.pone.0017304.
  17. Trainor L.J. Are there critical periods for musical development? Dev Psychobiol 2004; 46: 262–278.
  18. Costa-Giomi E. Young children’s harmonic perception. Ann N Y Acad Sci 2003; 999: 477–484.
  19. Korsakova-Kreyn M., Dowling W.J. Emotional processing in music: study in affective responses to tonal modulation in controlled harmonic progressions and real music. Psychomusicology: Music, Mind, and Brain 2014; 24(1): 4–20, https://doi.org/10.1037/pmu0000029.
  20. Bigand E., Poulin-Charronnat B. Are we “experienced listeners”? A review of the musical capacities that do not depend on formal musical training. Cognition 2006; 100(1): 100–130, https://doi.org/10.1016/j.cognition.2005.11.007.
  21. Panksepp J. Affective neuroscience: the foundations of human and animal emotions. New York: Oxford University Press; 1998.
  22. Panksepp J. Affective consciousness: core emotional feelings in animals and humans. Send to Conscious Cogn 2005; 14(1): 30–80, https://doi.org/10.1016/j.concog.2004.10.004.
  23. MacLean P.D. The triune brain in evolution: role in paleocerebral functions. New York: Plenum Press; 1990.
  24. MacLean P.D. Some psychiatric implications of physiological studies on frontotemporal portion of limbic system (visceral brain). Electroencephalogr Clin Neurophysiol 1952; 4(4): 407–418, https://doi.org/10.1016/0013-4694(52)90073-4.
  25. Lerdahl F. Tonal pitch space. New York: Oxford University Press; 2001.
  26. Lerdahl F., Krumhansl C.L. Modeling tonal tension. Music Perception: an Interdisciplinary Journal 2007; 24(4): 329–366, https://doi.org/10.1525/mp.2007.24.4.329.
  27. Gagnon L., Peretz I. Mode and tempo relative contributions to “happy-sad” judgements in equitone melodies. Cogn Emot 2003; 17(1): 25–40, https://doi.org/10.1080/02699930302279.
  28. Hevner K. Experimental studies of the elements of expression in music. Am J Psychol 1936; 48(2): 246, https://doi.org/10.2307/1415746.
  29. Kastner M.P., Crowder R.G. Perception of the major/minor distinction: IV. Emotional connotations in young children. Music Perception: an Interdisciplinary Journal 1990; 8(2): 189–201, https://doi.org/10.2307/40285496.
  30. Trochidis K., Bigand E. Investigation of the effect of mode and tempo on emotional responses to music using EEG power asymmetry. J Psychophysiol 2013; 27(3): 142–148, https://doi.org/10.1027/0269-8803/a000099.
  31. Virtala P., Tervaniemi M. Neurocognition of major-minor and consonance-dissonance. Music Perception: an Interdisciplinary Journal 2017; 34(4): 387–404, https://doi.org/10.1525/mp.2017.34.4.387.
  32. Webster G.D., Weir C.G. Emotional responses to music: interactive effects of mode, texture, and tempo. Motivation and Emotion 2005; 29(1): 19–39, https://doi.org/10.1007/s11031-005-4414-0.
  33. Firmino E.A., Bueno J.L.O., Bigand E. Effects of tonal modulation on subjective time estimation. Music Perception 2009; 26(3): 205–209.
  34. Koelsch S., Gunter T., Schröger E., Friederici A.D. Processing tonal modulations: an ERP study. J Cogn Neurosci 2003; 15(8): 1149–1159, https://doi.org/10.1162/089892903322598111.
  35. Radchenko G.S., Parin S.B., Polevaya S.A., Korsakova-Kreyn M.N., Fedotchev A.I. EEG correlates of perception of tonal modulation in musical fragments. Int J Psychophysiol 2014; 94(2): 192, https://doi.org/10.1016/j.ijpsycho.2014.08.798.
  36. Thompson W.F., Cuddy L.L. Music performance and the perception of key. J Exp Psychol Hum Percept Perform 1997; 23(1): 116–35, https://doi.org/10.1037/0096-1523.23.1.116.
  37. Tillmann B., Bharucha J.J., Bigand E. Implicit learning of tonality: a self-organizing approach. Psychol Rev 2000; 107(4): 885–913, https://doi.org/10.1037/0033-295x.107.4.885.
  38. Fétis F.-J. Complete treatise on the theory and practice of harmony. Translated by Landey P.M. Hillsdale: Pendragon Press; 2008.
  39. Meyer L.B. Emotion and meaning in music. Chicago, IL: University of Chicago Press; 1956.
  40. Rosen C. Sonata forms. New York: W.W. Norton; 1988.
  41. Schoenberg A. Structural functions of harmony. New York: W.W. Norton; 1969.
  42. Korsakova-Kreyn M. Two-level model of embodied cognition in music. Psychomusicology: Music, Mind, and Brain 2018; 28(4): 240–259, https://doi.org/10.1037/pmu0000228.
  43. Hepokoski J., Darcy W. Elements of sonata theory norms, types, and deformations in the late-eighteenth-century sonata. New York: Oxford University Press; 2006.
  44. Sposobin I.V. Muzykal’naya forma [Musical form]. Moscow: Muzyka; 1984.
  45. Scruton R. The aesthetics of music. New York: Oxford University Press; 1997.
  46. Nielsen F.V. Oplevelse of musikalsk spænding [The experience of musical tension]. Copenhagen: Akademisk Forlag; 1983.
  47. Madsen C.K., Fredrickson W.E. The experience of musical tension: a replication of Nielsen’s research using the continuous response digital interface. J Music Ther 1993; 30(1): 46–63, https://doi.org/10.1093/jmt/30.1.46.
  48. Williams L.R., Fredrickson W.E., Atkinson S. Focus of attention to melody or harmony and perception of music tension: an exploratory study. International Journal of Music Education 2011; 29(1): 72–81, https://doi.org/10.1177/0255761410372725.
  49. Damasio A. The feeling of what happens: body and emotion in the making of consciousness. London: Heinemann; 1999.
  50. Damasio A. Self comes to mind: constructing the conscious brain. New York: Pantheon Books; 2010.
  51. Bidelman G.M., Krishnan A. Neural correlates of consonance, dissonance, and the hierarchy of musical pitch in the human brainstem. J Neurosci 2009; 29(42): 13165–13171, https://doi.org/10.1523/jneurosci.3900-09.2009.
  52. Bidelman G.M., Krishnan A. Brainstem correlates of behavioral and compositional preferences of musical harmony. NeuroReport 2011; 22(5): 212–326, https://doi.org/10.1097/wnr.0b013e328344a689.
  53. Ferrero G. L’inertie mentale et la loi du moindre effort [Mental inertia and the law of least effort]. Revue Philosophique de la France et de l’Étranger 1894; 37: 169–182.
  54. Bowling D.L., Purves D. A biological rationale for musical consonance. Proc Natl Acad Sci U S A 2015; 112(36): 11155–11160, https://doi.org/10.1073/pnas.1505768112.
  55. Helmholtz H.L.F. On the sensations of tone as a physiological basis for the theory of music. Translated by Ellis A.J. UK: Cambridge University Press; 2009, https://doi.org/10.1017/cbo9780511701801.
  56. Dassa A., Amir D. The role of singing familiar songs in encouraging conversation among people with middle to late stage Alzheimer’s disease. J Music Ther 2014; 51(2): 131–153, https://doi.org/10.1093/jmt/thu007.
  57. Quintin E.-M., Bhatara A., Poissant H., Fombonne E., Levitin D.J. Emotion perception in music in high-functioning adolescents with autism spectrum disorders. J Autism Dev Disord 2010; 41(9): 1240–1255, https://doi.org/10.1007/s10803-010-1146-0.
  58. Langer S. Philosophy in a new key. A study in the symbolism of reason, rite, and art. Cambridge: Harvard University Press; 1942.
  59. Peretz I., Vuvan D.T. Prevalence of congenital amusia. Eur J Hum Genet 2017; 25(5): 625–830, https://doi.org/10.1038/ejhg.2017.15.
  60. Krumhansl C.L., Kessler E.J. Tracing the dynamic changes in perceived tonal organization in a spatial representation of musical keys. Psychol Rev 1982; 89(4): 334–368, https://doi.org/10.1037/0033-295x.89.4.334.
  61. Chew E. Mathematical and computational modeling of tonality: theory and applications. International Series in Operations Research & Management Science. Springer US; 2014, https://doi.org/10.1007/978-1-4614-9475-1.
  62. Purwins H., Blankertz B., Obermayer K. Toroidal models in tonal theory and pitch-class analysis. Computing in Musicology 2007; 15: 73–98.
  63. Altenmüller E., Schlaug G. Apollo’s gift: new aspects of neurologic music therapy. Prog Brain Res 2015; 217: 237–252, https://doi.org/10.1016/bs.pbr.2014.11.029.
  64. Wan C.Y., Demaine K., Zipse L., Norton A., Schlaug G. From music making to speaking: engaging the mirror neuron system in autism. Brain Res Bull 2010; 82(3–4): 161–168, https://doi.org/10.1016/j.brainresbull.2010.04.010.
  65. Kim J., Wigram T., Gold C. Emotional, motivational and interpersonal responsiveness of children with autism in improvisational music therapy. Autism 2009; 13(4): 389–409, https://doi.org/10.1177/1362361309105660.
  66. Schlaug G., Marchina S., Norton A. Evidence for plasticity in white-matter tracts of patients with chronic Broca’s aphasia undergoing intense intonation-based speech therapy. Ann N Y Acad Sci 2009; 1169(1): 385–394, https://doi.org/10.1111/j.1749-6632.2009.04587.x.
  67. Parker N.F., Cameron C.M., Taliaferro J.P., Lee J., Choi J.Y., Davidson T.J., Daw N.D., Witten I.B. Reward and choice encoding in terminals of midbrain dopamine neurons depends on striatal target. Nat Neurosci 2016; 19(6): 845–854, https://doi.org/10.1038/nn.4287.
  68. Xu Z., Chu X., Jiang H., Schilling H., Chen S., Feng J. Induced dopaminergic neurons: a new promise for Parkinson’s disease. Redox Biol 2017; 11: 606–612, https://doi.org/10.1016/j.redox.2017.01.009.
  69. Ashoori A., Eagleman D.M., Jankovic J. Effects of auditory rhythm and music on gait disturbances in Parkinson’s disease. Front Neurol 2015; 6: 234, https://doi.org/10.3389/fneur.2015.00234.
  70. Bukowska A.A., Krężałek P., Mirek E., Bujas P., Marchewka A. Neurologic music therapy training for mobility and stability rehabilitation with Parkinson’s disease — a pilot study. Front Hum Neurosci 2016; 9: 710, https://doi.org/10.3389/fnhum.2015.00710.
  71. Pau M., Corona F., Pili R., Casula C., Sors F., Agostini T., Cossu G., Guicciardi M., Murgia M. Effects of physical rehabilitation integrated with rhythmic auditory stimulation on spatio-temporal and kinematic parameters of gait in Parkinson’s disease. Front Neurol 2016; 7: 126, https://doi.org/10.3389/fneur.2016.00126.
  72. Särkämö T., Tervaniemi M., Laitinen S., Forsblom A., Soinila S., Mikkonen M., Autti T., Silvennoinen H.M., Erkkilä J., Laine M., Peretz I., Hietanen M. Music listening enhances cognitive recovery and mood after middle cerebral artery stroke. Brain 2008; 131(3): 866–876, https://doi.org/10.1093/brain/awn013.
  73. Gaser C., Schlaug G. Brain structures differ between musicians and non-musicians. J Neurosci 2003; 23(27): 9240–9245.
  74. Hyde K.L., Lerch J., Norton A., Forgeard M., Winner E., Evans A.C., Schlaug G. Musical training shapes structural brain development. J Neurosci 2009; 29(10): 3019–3025, https://doi.org/10.1523/jneurosci.5118-08.2009.
  75. Wan C.Y., Schlaug G. Music making as a tool for promoting brain plasticity across the life span. Neuroscientist 2010; 16(5): 566–577, https://doi.org/10.1177/1073858410377805.
  76. Schellenberg E.G. Music lessons enhance IQ. Psychological Science 2004; 15(8): 511–514, https://doi.org/10.1111/j.0956-7976.2004.00711.x.
  77. Forgeard M., Winner E., Norton A., Schlaug G. Practicing a musical instrument in childhood is associated with enhanced verbal ability and nonverbal reasoning. PLoS One 2008; 3(10): e3566, https://doi.org/10.1371/journal.pone.0003566.
  78. Bugos J.A., Perlstein W.M., McCrae C.S., Brophy T.S., Bedenbaugh P.H. Individualized piano instruction enhances executive functioning and working memory in older adults. Aging Ment Health 2007; 11(4): 464–471, https://doi.org/10.1080/13607860601086504.
  79. Seinfeld S., Figueroa H., Ortiz-Gil J., Sanchez-Vives M.V. Effects of music learning and piano practice on cognitive function, mood and quality of life in older adults. Front Psychol 2013; 4: 810, https://doi.org/10.3389/fpsyg.2013.00810.
  80. Fedotchev A.I., Oh S.J., Semikin G.I. Combination of neurofeedback technique with music therapy for effective correction of stress-induced disorders. Sovremennye tehnologii v medicine 2014; 6(3): 60–63.
  81. Fedotchev A.I., Bondar’ A.T., Bakhchina A.V., Parin S.B., Polevaya S.A., Radchenko G.S. Effects of music-acoustic signals, online controlled by EEG oscillators of the subject. Rossiiskii fiziologicheskii zhurnal imeni I.M. Sechenova 2015; 101(8): 970–977.
  82. Fedotchev A.I., Bondar A.T., Bakhchina A.V., Grigorieva V.N., Katayev A.A., Parin S.B., Radchenko G.S., Polevaya S.A. Transformation of patient’s EEG oscillators into music-like signals for correction of stress-induced functional states. Sovremennye tehnologii v medicine 2016; 8(1): 93–98, https://doi.org/10.17691/stm2016.8.1.12.
  83. Fedotchev A.I., Bondar’ A.T., Bakhchina A.V., Parin S.B., Polevaya S.A., Radchenko G.S. Music-acoustic signals controlled by subject’s brain potentials in the correction of unfavorable functional states. Uspekhi fiziologicheskikh nauk 2016; 47(1): 69–79.
  84. Fedotchev A.I., Zhuravlev G.I., Eksina K.I., Silantieva O.M., Polevaya S.A. Evaluation of efficiency of musical EEG neurointerface with additional control contour from heart rhythm. Rossiiskii fiziologicheskii zhurnal imeni I.M. Sechenova 2018; 104(1–12): 122–128.
  85. Zemlyanaya A.A., Radchenko G.S., Fedotchev A.I. Music therapy procedures controlled by the brain potentials in treatment of functional disorders. Zhurnal nevrologii i psihiatrii imeni S.S. Korsakova 2018; 118(3): 103, https://doi.org/10.17116/jnevro201811831103-106.
Korsakova-Kreyn M. Language of Music and Its Psychophysical Foundations (Review). Sovremennye tehnologii v medicine 2019; 11(1): 40, https://doi.org/10.17691/stm2019.11.1.04


Journal in Databases

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg

SCImago Journal & Country Rank