Today: Dec 27, 2024
RU / EN
Last update: Dec 27, 2024
Effect of Low-Energy Nanosecond Laser Therapy on Reparative Osteogenesis <i>in vivo</i>

Effect of Low-Energy Nanosecond Laser Therapy on Reparative Osteogenesis in vivo

Bazikyan E.A., Chunikhin A.A., Chobanyan A.G., Akhmazov E.V., Zhuruly G.N., Sahakyan M.Y., Zayratyants O.V.
Key words: low-energy laser radiation; photodynamic effect; nanosecond pulsed laser; bone tissue remodeling; osteoclastogenesis; osteoblastogenesis.
2019, volume 11, issue 2, page 44.

Full text

html pdf
1850
1603

The aim of the study was to assess the effect of low-intensity pulsed laser radiation on reparative osteogenesis of the jaw bones in the in vivo experimental study.

Materials and Methods. The experimental study was performed on 70 mature male Wistar rats whose lower molar was moved using an orthodontic spring for 21 days. A laser device with unique radiation parameters in a nanosecond pulsed mode of radiation with a wavelength corresponding to the oxygen absorption peak in the tissues was used for treatment. In the control group, laser treatment was not applied. To confirm the effect of laser radiation with the selected parameters on the stimulation of bone tissue remodeling, a morphological study was carried out followed by a morphometric study with a quantitative assessment of osteoclasts in the periodontal ligament on the border with the alveolar bone and in resorption lacunae.

Results. Already on the third day of the experiment, on the pressure side in the experimental group there was noted dilation and pronounced hyperemia of the periodontal ligament vessels, the appearance of a large quantity of osteoclasts on the border with the alveolar bone as compared to the control group. On day 7, the activation of fibroblasts, osteoblasts, and cementoblasts with the formation of new tooth root cement was noted on the pressure side, while a new cement formation in the control group was observed only on day 14 of the experiment. On day 21, in the experimental group, almost completely regenerated bone tissue of the alveoli was noted; in the control group, at this stage of observation, marked diffuse inflammatory infiltration of leukocytes with an admixture of lymphocytes and macrophages surrounding the fragments of the partially resorbed alveolar bone was seen.

Osteoclasts and osteoblasts are involved in the processes of bone tissue remodeling. Acceleration of bone resorption is of greater significance on the medial side in the direction of the tooth movement, whereas the regeneration processes are more important on the distal side. Morphometric examination showed over a 1.5-fold increase in the number of osteoclasts in the experimental group compared to the control group at all stages of observation.

Conclusion. Application of low-energy pulsed laser radiation with the given parameters accelerates bone tissue remodeling and contributes to neovascularization and filling the periodontal ligament and adjacent alveolar bone tissue with blood.

  1. Shakhno E.A. Fizicheskie osnovy primeneniya lazerov v meditsine [The physical basis of the use of lasers in medicine]. Saint Petersburg; 2012.
  2. Bazikyan E.A., Chunikhin A.A. Prospects of improvement of minimally invasive laser technologies in photodynamic therapy dental pathologies. Rossiyskiy stomatologicheskiy zhurnal 2016; 20(5): 228–231.
  3. Chunikhin A.A., Mitronin A.V. Endodontic treatment of a pulpitis: traditional and modern approaches. Endodontiya today 2009; 4: 3–10.
  4. Voronova O.S., Gening T.P., Sysoliatin А.А., Svetukhin V.V. Effect of femtosecond laser radiation on prooxidant and antioxidant status of mice with experimental cervical cancer. Fundamental’nye issledovaniya 2012; 1: 24–27.
  5. Zakharov S.D., Ivanov A.V. Light-oxygen effect as a physical mechanism for activation of biosystems by quasi-monochromatic light (a review). Biophysics 2005; 50(1): S64–S85.
  6. Anquez F., El Yazidi-Belkoura I., Randoux S., Suret P., Courtade E. Cancerous cell death from sensitizer free photoactivation of singlet oxygen. Photochem Photobiol 2011; 88(1): 167–174, https://doi.org/10.1111/j.1751-1097.2011.01028.x.
  7. Sirak S.V., Shchetinin E.V., Petrosyan G.G., Gatilo Yu.Yu. Influence of pulse semiconductor laser infrared range on the activity of alkaline phosphatase in experimental uncomplicated fracture of mandible and traumatic osteomyelitis. Kubanskiy nauchnyy meditsinskiy vestnik 2016; 4(159): 106–110.
  8. Schwarz F., Sculean A., Berakdar M., Szathmari L., Georg T., Becker J. In vivo and in vitro effects of an Er:YAG laser, a GaAlAs diode laser, and scaling and root planing on periodontally diseased root surfaces: a comparative histologic study. Lasers Surg Med 2003; 32(5): 359–366, https://doi.org/10.1002/lsm.10179.
  9. Marques L., Holgado L.A., Francischone L.A., Ximenez J.P.B., Okamoto R., Kinoshita A. New LLLT protocol to speed up the bone healing process — histometric and immunohistochemical analysis in rat calvarial bone defect. Lasers Med Sci 2014; 30(4): 1225–1230, https://doi.org/10.1007/s10103-014-1580-x.
  10. Chunikhin A.A., Sahakyan M.Y., Gazhva S.I., Bazikyan E.A. Development of nanosecond laser module built in the robotic multifunctional surgical complex for minimally invasive therapy of maxillofacial area pathology and estimation of its effects on blood plasma. Sovremennye tehnologii v medicine 2016; 8(4): 30–35, https://doi.org/10.17691/stm2016.8.4.04.
  11. Chunikhin A.A., Bazikyan E.A., Pikhtin N.A. A laser unit for photodynamic therapy and robot-assisted microsurgery in dentistry. Technical Physics Letters 2017; 43(6): 507–510, https://doi.org/10.1134/s1063785017060074.
  12. Kawasaki K., Shimizu N. Effects of low-energy laser irradiation on bone remodeling during experimental tooth movement in rats. Lasers Surg Med 2000; 26(3): 282–291, https://doi.org/10.1002/(sici)1096-9101(2000)26:3282::aid-lsm63.3.co;2-o.
Bazikyan E.A., Chunikhin A.A., Chobanyan A.G., Akhmazov E.V., Zhuruly G.N., Sahakyan M.Y., Zayratyants O.V. Effect of Low-Energy Nanosecond Laser Therapy on Reparative Osteogenesis in vivo. Sovremennye tehnologii v medicine 2019; 11(2): 44, https://doi.org/10.17691/stm2019.11.2.06


Journal in Databases

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg

SCImago Journal & Country Rank