Today: Dec 22, 2024
RU / EN
Last update: Oct 30, 2024
Multimodal Optical Coherence Tomography: Imaging of Blood and Lymphatic Vessels of the Vulva

Multimodal Optical Coherence Tomography: Imaging of Blood and Lymphatic Vessels of the Vulva

Sirotkina M.A., Potapov A.L., Vagapova N.N., Safonov I.K., Karashtin D.A., Matveev L.A., Radenska-Lopovok S.G., Timakova A.A., Kuznetsov S.S., Zagaynova E.V., Kuznetsova I.A., Gladkova N.D.
Key words: OCT angiography; OCT lymphangiography; vulva; lichen sclerosus; OCT microcirculation; blood vessels; lymphatic vessels.
2019, volume 11, issue 4, page 26.

Full text

html pdf
2293
1542

The aim of the study was to test the method of optical coherence tomography (OCT) for its ability to obtain images of blood and lymphatic vessels of the vulva.

Materials and Methods. The study was performed using a multimodal optical coherence tomography device developed in the Institute of Applied Physics of the Russian Academy of Sciences (Nizhny Novgorod). In this setup, 3D images of 3.4×3.4×1.25 mm are created within 26 s. OCT angiography and OCT lymphangiography are based on the speckle structure analysis. Visualization of blood and lymphatic vessels does not require any additional contrast agents.

A histological study of vulvar biopsy samples from two locations was performed in 3 patients without vulvar pathology and in 5 patients with vulvar lichen sclerosus; the results were then compared with 3D OCT images obtained at the same locations.

Results. Using the multimodal OCT, we found that normal mucous membrane of the vulva had a well-developed network of blood and lymphatic vessels; their diameters were increasing with depth. In the subepithelial zone, only blood capillary loops could be seen, whereas lymphatic capillaries became detectable starting from a depth of 170 μm (submucosa layer).

In the case of vulvar lichen sclerosus, the density of the blood vessel network decreases dramatically and the capillary loops in the subepithelial zone disappear. Lymphatic vessels become detectable at a depth of 300 μm, and only few thin vessels can be detected at depths of 300 to 600 μm. The results suggest that the presentation of blood and lymphatic vessels depends on the state of the vulvar connective tissue. Specifically, the number of blood and lymphatic vessels is reduced in areas of hyalinosis and sclerosis of collagen fibers.

Conclusion. For the first time, using multimodal OCT, an in vivo study of blood and lymphatic vessels of the vulvar mucosa was performed on normal and lichen sclerosus-affected vulva; the obtained OCT images were then compared with histological images of the same tissues. The OCT method allows one to diagnose a zone of hyalinosis and sclerosis of collagen fibers characterized by an abnormally low number of blood and lymphatic vessels.

  1. Tasker G.L., Wojnarowska F. Lichen sclerosus. Clin Exp Dermatol 2003; 28(2): 128–133, https://doi.org/10.1046/j.1365-2230.2003.01211.x.
  2. Oyama N., Chan I., Neill S.M., South A.P., Wojnarowska F., Kawakami Y., D’Cruz D., Mepani K., Hughes G.J., Bhogal B.S., Kaneko F., Black M.M., McGrath J.A. Development of antigen-specific ELISA for circulating autoantibodies to extracellular matrix protein 1 in lichen sclerosus. J Clin Invest 2004; 113(11): 1550–1559, https://doi.org/10.1172/jci200420373.
  3. Olek-Hrab K., Jenerowicz D., Osmola-Mańkowska A., Polańska A., Teresiak-Mikołajczak E., Silny W., Adamski Z. Selected vulvar dermatoses. Ginekol Pol 2013; 84(11): 959–965, https://doi.org/10.17772/gp/1667.
  4. Oyama N., Merregaert J. The extracellular matrix protein 1 (ECM1) in molecular-based skin biology. In: Farage M., Miller K., Maibach H. (editors). Textbook of aging skin. Springer, Berlin, Heidelberg; 2015; p. 1–20, https://doi.org/10.1007/978-3-642-27814-3_8-2.
  5. Godoy C.A., Teodoro W.R., Velosa A.P., Garippo A.L., Eher E.M., Parra E.R., Sotto M.N., Capelozzi V.L. Unusual remodeling of the hyalinization band in vulval lichen sclerosus by type V collagen and ECM 1 protein. Clinics (Sao Paulo) 2015; 70(5): 356–362, https://doi.org/10.6061/clinics/2015(05)09.
  6. Hewitt J. Histologic criteria for lichen sclerosus of the vulva. J Reprod Med 1986; 31(9): 781–787.
  7. Kowalewski C., Kozłowska A., Chan I., Górska M., Woźniak K., Jabłońska S., McGrath J.A. Three-dimensional imaging reveals major changes in skin microvasculature in lipoid proteinosis and lichen sclerosus. J Dermatol Sci 2005; 38(3): 215–224, https://doi.org/10.1016/j.jdermsci.2005.01.012.
  8. Li Y.Z., Wu Y., Zhang Q.H., Wang Y., Zhen J.H., Li S.L. Hypoxia-ischaemia is involved in the pathogenesis of vulvar lichen sclerosus. Clin Exp Dermatol 2009; 34(8): e531–e536, https://doi.org/10.1111/j.1365-2230.2009.03571.x.
  9. van der Avoort I.A., van der Laak J.A., Otte-Höller I., van de Nieuwenhof H.P., Massuger L.F., de Hullu J.A., van Kempen L.C. The prognostic value of blood and lymph vessel parameters in lichen sclerosus for vulvar squamous cell carcinoma development: an immunohistochemical and electron microscopy study. Am J Obstet Gynecol 2010; 203(2): 167.e1–167.e8, https://doi.org/10.1016/j.ajog.2010.02.002.
  10. Alitalo K. The lymphatic vasculature in disease. Nat Med 2011; 17(11): 1371–1380, https://doi.org/10.1038/nm.2545.
  11. Ruocco E., Puca R.V., Brunetti G., Schwartz R.A., Ruocco V. Lymphedematous areas: privileged sites for tumors, infections, and immune disorders. Int J Dermatol 2007; 46(6): 662, https://doi.org/10.1111/j.1365-4632.2007.03244.x.
  12. Lund A.W., Medler T.R., Leachman S.A., Coussens L.M. Lymphatic vessels, inflammation, and immunity in skin cancer. Cancer Discov 2016; 6(1): 22–35, https://doi.org/10.1158/2159-8290.cd-15-0023.
  13. Harni V., Babic D., Barisic D. “Three rings vulvoscopy” a new approach to the vulva. In: Watson L. (editor). Cryosurgery and colposcopy. Nova Science Publishers, Inc.; 2016; p. 146–153.
  14. Gelikonov G.V., Gelikonov V.M. New approach to cross-polarized optical coherence tomography based on orthogonal arbitrarily polarized modes. In: Proc. SPIE 6429, Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine XI, 64290L. SPIE; 2007, https://doi.org/10.1117/12.704015.
  15. Husvogt L., Ploner S., Maier A. Optical coherence tomography. In: Maier A., Steidl S., Christlein V., Hornegger J. (editors). Medical imaging systems. Lecture notes in computer science. Vol. 11111. Springer, Cham; 2018; p. 251–261, https://doi.org/10.1007/978-3-319-96520-8_12.
  16. Maslennikova A.V., Sirotkina M.A., Moiseev A.A., Finagina E.S., Ksenofontov S.Y., Gelikonov G.V., Matveev L.A., Kiseleva E.B., Zaitsev V.Y., Zagaynova E.V., Feldchtein F.I., Gladkova N.D., Vitkin A. In-vivo longitudinal imaging of microvascular changes in irradiated oral mucosa of radiotherapy cancer patients using optical coherence tomography. Sci Rep 2017; 7(1): 16505, https://doi.org/10.1038/s41598-017-16823-2.
  17. Sirotkina M.A., Matveev L.A., Shirmanova M.V., Zaitsev V.Y., Buyanova N.L., Elagin V.V., Gelikonov G.V., Kuznetsov S.S., Kiseleva E.B., Moiseev A.A., Gamayunov S.V., Zagaynova E.V., Feldchtein F.I., Vitkin A., Gladkova N.D. Photodynamic therapy monitoring with optical coherence angiography. Sci Rep 2017; 7(1): 41506, https://doi.org/10.1038/srep41506.
  18. Sirotkina M.A., Moiseev A.A., Matveev L.A., Zaitsev V.Y., Elagin V.V., Kuznetsov S.S., Gelikonov G.V., Ksenofontov S.Y., Zagaynova E.V., Feldchtein F.I., Gladkova N.D., Vitkin A. Accurate early prediction of tumour response to PDT using optical coherence angiography. Sci Rep 2019; 9(1): 6492, https://doi.org/10.1038/s41598-019-43084-y.
  19. Leitgeb R., Hitzenberger C.K., Fercher A.F. Performance of fourier domain vs. time domain optical coherence tomography. Opt Express 2003; 11(8): 889–894, https://doi.org/10.1364/oe.11.000889.
  20. Matveev L.A., Demidov V.V., Sovetsky A.A., Moiseev A.A., Matveyev A.L., Gelikonov G.V., Zaitsev V.Y., Vitkin A. OCT-based label-free 3D mapping of lymphatic vessels and transparent interstitial-fluid-filled dislocations. In: International conference laser optics (ICLO). IEEE; 2018; p. 512, https://doi.org/10.1109/lo.2018.8435727.
  21. Shilyagin P.A., Gelikonov G.V., Gelikonov V.M., Moiseev A.A., Terpelov D.A. Achromatic registration of quadrature components of the optical spectrum in spectral domain optical coherence tomography. Quantum Electronics 2014; 44(7): 664, https://doi.org/10.1070/qe2014v044n07abeh015465.
  22. Shilyagin P.A., Ksenofontov S.Y., Moiseev A.A., Terpelov D.A., Matkivsky V.A., Kasatkina I.V., Mamaev Y.A., Gelikonov G.V., Gelikonov V.M. Equidistant recording of the spectral components in ultra-wideband spectral-domain optical coherence tomography. Radiophysics and Quantum Electronics 2018; 60(10): 769–778, https://doi.org/10.1007/s11141-018-9845-z.
  23. Matveev L.A., Demidov V., Sirotkina M.A., Karashtin D.A., Moiseev A.A., Popov I., Sovetsky A.A., Matveyev A.L., Demidova O., Gelikonov G.V., Flueraru C., Zagaynova E.V., Gladkova N.D., Zaitsev V.Y., Vitkin I.A. OCT lymphangiography based on speckle statistics evaluation. In: Proc. SPIE 11065, Saratov Fall Meeting 2018: Optical and Nano-Technologies for Biology and Medicine, 1106502. SPIE; 2019, https://doi.org/10.1117/12.2523291.
  24. Moiseev A.A., Ksenofontov S., Sirotkina M., Kiseleva E., Gorozhantseva M., Shakhova N., Matveev L., Zaitsev V., Matveyev A., Zagaynova E., Gelikonov V., Gladkova N., Vitkin A., Gelikonov G. Optical coherence tomography-based angiography device with real-time angiography B-scans visualization and hand-held probe for everyday clinical use. J Biophotonics 2018; 11(10): e201700292, https://doi.org/10.1002/jbio.201700292.
  25. Borodin Yu.I. Lymphatic system and ageing. Fundamental’nye issledovaniya 2011; 5: 11–15.
  26. Matveev L.A., Zaitsev V.Y., Gelikonov G.V., Matveyev A.L., Moiseev A.A., Ksenofontov S.Y., Gelikonov V.M., Sirotkina M.A., Gladkova N.D., Demidov V., Vitkin A. Hybrid M-mode-like OCT imaging of three-dimensional microvasculature in vivo using reference-free processing of complex valued B-scans. Opt Lett 2015; 40(7): 1472–1475, https://doi.org/10.1364/ol.40.001472.
Sirotkina M.A., Potapov A.L., Vagapova N.N., Safonov I.K., Karashtin D.A., Matveev L.A., Radenska-Lopovok S.G., Timakova A.A., Kuznetsov S.S., Zagaynova E.V., Kuznetsova I.A., Gladkova N.D. Multimodal Optical Coherence Tomography: Imaging of Blood and Lymphatic Vessels of the Vulva. Sovremennye tehnologii v medicine 2019; 11(4): 26, https://doi.org/10.17691/stm2019.11.4.03


Journal in Databases

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg

SCImago Journal & Country Rank