Today: Dec 22, 2024
RU / EN
Last update: Oct 30, 2024
Raman Spectroscopy as a Modern Diagnostic Technology for Study and Indication of Infectious Agents (Review)

Raman Spectroscopy as a Modern Diagnostic Technology for Study and Indication of Infectious Agents (Review)

Andryukov B.G., Karpenko A.A., Matosova E.V., Lyapun I.N.
Key words: bacteria; viruses; indication; Raman spectroscopy; modern diagnostic technologies.
2019, volume 11, issue 4, page 161.

Full text

html pdf
4452
3711

The study and detection of causative agents of infectious diseases are an important and urgent task, the progress of which can be achieved only if different approaches are used. Current diagnostic technologies based on different biophysical detection principles allow the research of complex biological substrates with a high degree of analytical reliability. Raman spectroscopy based on the discovery of molecular structure has long established itself as a reliable analytical tool in various fields of science and technology.

The purpose of this report is to review current achievements in microbiology using the Raman spectroscopy, demonstration its limitations, as well as the most important world trends in the application of this diagnostic technology for the study and indication of pathogens of bacterial and viral infections.

  1. Rai M.K., Deshmukh S.D., Ingle A.P., Gade A.K. Silver nanoparticles: the powerful nanoweapon against multidrug-resistant bacteria. J Appl Microbiol 2012; 112(5): 841–852, https://doi.org/10.1111/j.1365-2672.2012.05253.x.
  2. Centers for Disease Control and Prevention. Antibiotic resistance threats in the United State, 2013. URL: https://www.cdc.gov/drugresistance/pdf/ar-threats-2013-508.pdf.
  3. Pahlow S., Meisel S., Cialla-May D., Weber K., Rösch P., Popp J. Isolation and identification of bacteria by means of Raman spectroscopy. Adv Drug Deliv Rev 2015; 89: 105–120, https://doi.org/10.1016/j.addr.2015.04.006.
  4. Morens D.M., Fauci A.S. Emerging infectious diseases: threats to human health and global stability. PLoS Pathog 2013; 9(7): e1003467, https://doi.org/10.1371/journal.ppat.1003467.
  5. Suda Y., Chamberlain J., Dowall S.D., Saijo M., Horimoto T., Hewson R., Shimojima M. The development of a novel diagnostic assay that utilizes a pseudotyped vesicular stomatitis virus for the detection of neutralizing activity against Crimean-Congo hemorrhagic fever virus. Jpn J Infect Dis 2018; 71(3): 205–208, https://doi.org/10.7883/yoken.jjid.2017.354.
  6. Huang W.E., Griffiths R.I., Thompson I.P., Bailey M.J., Whiteley A.S. Raman Microscopic analysis of single microbial cells. Anal Chem 2004; 76(15): 4452–4458, https://doi.org/10.1021/ac049753k.
  7. Huang W.E., Li M., Jarvis R.M., Goodacre R., Banwart S.A. Shining light on the microbial world: the application of Raman microspectroscopy. Adv Appl Microbiol 2010; 70: 153–186, https://doi.org/10.1016/s0065-2164(10)70005-8.
  8. Patel I.S., Premasiri W.R., Moir D.T., Ziegler L.D. Barcoding bacterial cells: a SERS based methododology for pathogen identification. J Raman Spectrosc 2008; 39: 1660–1672, https://doi.org/10.1002/jrs.2064.
  9. Zhu X., Xu T., Lin Q., Duan Y. Technical development of Raman spectroscopy: from instrumental to advanced combined technologies. Appl Spectrosc Rev 2014; 49(1): 64–82, https://doi.org/10.1080/05704928.2013.798801.
  10. Popp J., Krafft C., Mayerhöfer T. Modern Raman spectroscopy for biomedical applications. A variety of Raman spectroscopical techniques on the threshold of biomedical applications. Opt Photon 2011; 6(4): 24–28, https://doi.org/10.1002/opph.201190383.
  11. Li Y.-S., Church J.S. Raman spectroscopy in the analysis of food and pharmaceutical nanomaterials. J Food Drug Anal 2014; 22(1): 29–48, https://doi.org/10.1016/j.jfda.2014.01.003.
  12. Mann T.Z., Haddad L.B., Williams T.R., Read J.S., Dee D.L., Dziuban E.J., Pérez-Padilla J., Jamieson D.J., Honein M.A., Shapiro-Mendoza C.K. Breast milk transmission of flaviviruses in the context of Zika virus: a systematic review. Paediatr Perinat Epidemiol 2018, 32(4): 358–368, https://doi.org/10.1111/ppe.12478.
  13. Notingher I. Raman spectroscopy cell-based biosensors. Sensors 2007; 7(8): 1343–1358, https://doi.org/10.3390/s7081343.
  14. Efrima S., Zeiri L. Understanding SERS of bacteria. J Raman Spectrosc 2009; 40(3): 277–288, https://doi.org/10.1002/jrs.2121.
  15. Dina N.E., Zhou H., Colniţă A., Leopold N., Szoke-Nagy T., Coman C., Haisch C. Rapid single-cell detection and identification of pathogens by using surface-enhanced Raman spectroscopy. Analyst 2017; 142(10): 1782–1789, https://doi.org/10.1039/c7an00106a.
  16. Premasiri W.R., Moir D.T., Klempner M.S., Krieger N., Jones G., Ziegler L.D. Characterization of the surface enhanced Raman scattering (SERS) of bacteria. J Phys Chem B 2005; 109(1): 312–320, https://doi.org/10.1021/jp040442n.
  17. Law J., Ab Mutalib N., Chan K., Lee L. Rapid methods for the detection of foodborne bacterial pathogens: principles, applications, advantages and limitations. Front Microbiol 2015; 5: 770, https://doi.org/10.3389/fmicb.2014.00770.
  18. Mosier-Boss P.A. Review on SERS of bacteria. Biosensors 2017; 7(4): 51, https://doi.org/10.3390/bios7040051.
  19. Pacheco M.T.T., Moreira L.M. Raman spectroscopy: new perspectives for its clinical application in diagnosis. Photomed Laser Surg 2013; 31(10): 463–465, https://doi.org/10.1089/pho.2013.9873.
  20. Wang L., Ye C., Xu H., Aguilar Z.P., Xiong Y., Lai W., Wei H. Development of an SD-PMA-mPCR assay with internal amplification control for rapid and sensitive detection of viable Salmonella spp., Shigella spp. and Staphylococcus aureus in food products. Food Control 2015; 57: 314–320.
  21. Sas M.A., Comtet L., Donnet F., Mertens M., Vatansever Z., Tordo N., Pourquier P., Groschup M.H. A novel double-antigen sandwich ELISA for the species-independent detection of Crimean-Congo hemorrhagic fever virus-specific antibodies. Antiviral Res 2018; 151: 24–26, https://doi.org/10.1016/j.antiviral.2018.01.006.
  22. Neng J., Li Y., Driscoll A.J., Wilson W.C., Johnson P.A. Detection of multiple pathogens in serum using silica-encapsulated nanotags in a surface-enhanced Raman scattering-based immunoassay. J Agric Food Chem 2018; 66(22): 5707–5712, https://doi.org/10.1021/acs.jafc.8b00026.
  23. Schmitt M., Popp J. Raman spectroscopy at the beginning of the twenty-first century. J Raman Spectrosc 2006; 37(1–3): 20–28, https://doi.org/10.1002/jrs.1486.
  24. Bocklitz T.W., Crecelius A.C., Matthäus C., Tarcea N., von Eggeling F., Schmitt M., Schubert U.S., Popp J. Deeper understanding of biological tissue: quantitative correlation of MALDI-TOF and Raman imaging. Anal Chem 2013; 85(22): 10829–10834, https://doi.org/10.1021/ac402175c.
  25. Bocklitz T.W., Bräutigam K., Urbanek A., Hoffmann F., von Eggeling F., Ernst G., Schmitt M., Schubert U., Guntinas-Lichius O., Popp J. Novel workflow for combining Raman spectroscopy and MALDI-MSI for tissue based studies. Anal Bioanal Chem 2015; 407(26): 7865–7873, https://doi.org/10.1007/s00216-015-8987-5.
  26. Sauget M., Valot B., Bertrand X., Hocquet D. Can MALDI-TOF mass spectrometry reasonably type bacteria? Trends Microbiol 2017; 25(6): 447–455, https://doi.org/10.1016/j.tim.2016.12.006.
  27. Cho I.H., Ku S. Current technical approaches for the early detection of foodborne pathogens: challenges and opportunities. Int J Mol Sci 2017; 18: E2078, https://doi.org/10.3390/ijms18102078.
  28. Cowan M.K., Bunn J. Microbiology fundamentals: a clinical approach. McGraw-Hill Education; New York, NY, USA; 2016.
  29. Mahmood T., Nawaz H., Ditta A., Majeed M.I., Hanif M.A., Rashid N., Bhatti H.N., Nargis H.F., Saleem M., Bonnier F., Byrne H.J. Raman spectral analysis for rapid screening of dengue infection. Spectrochim Acta A Mol Biomol Spectrosc 2018; 200: 136–142, https://doi.org/10.1016/j.saa.2018.04.018.
  30. Mao Z., Liu Z., Yang J., Han X., Zhao B., Zhao C. In situ semi-quantitative assessment of single-cell viability by resonance Raman spectroscopy. Chem Commun (Camb) 2018; 54(52): 7135–7138, https://doi.org/10.1039/c8cc01336e.
  31. Bergkessel M., Basta D.W., Newman D.K. The physiology of growth arrest: uniting molecular and environmental microbiology. Nat Rev Microbiol 2016; 14(9): 549–562, https://doi.org/10.1038/nrmicro.2016.107.
  32. Tao Y., Wang Y., Huang S., Zhu P., Huang W.E., Ling J., Xu J. Metabolic-activity-based assessment of antimicrobial effects by D2O-labeled single-cell Raman microspectroscopy. Anal Chem 2017; 89(7): 4108–4115, https://doi.org/10.1021/acs.analchem.6b05051.
  33. Li M.Q., Xu J., Romero-Gonzalez M., Banwart S.A., Huang W.E. Single cell Raman spectroscopy for cell sorting and imaging. Curr Opin Biotechnol 2012; 23(1): 56–63, https://doi.org/10.1016/j.copbio.2011.11.019.
  34. Zhao X., Li M., Xu Z. Detection of foodborne pathogens by surface enhanced Raman spectroscopy. Front Microbiol 2018; 9: 1236, https://doi.org/10.3389/fmicb.2018.01236.
  35. Premasiri W.R., Chen Y., Williamson P.M., Bandarage D.C., Pyles C., Ziegler L.D. Rapid urinary tract infection diagnostics by surface-enhanced Raman spectroscopy (SERS): identification and antibiotic susceptibilities. Anal Bioanal Chem 2017; 409(11): 3043–3054, https://doi.org/10.1007/s00216-017-0244-7.
  36. Sundaram J., Park B., Kwon Y., Lawrence K.C. Surface enhanced Raman scattering (SERS) with biopolymer encapsulated silver nanosubstrates for rapid detection of foodborne pathogens. Int J Food Microbiol 2013; 1(167): 67–73, https://doi.org/10.1016/j.ijfoodmicro.2013.05.013.
  37. Cialla-May D., Zheng X.S., Weber K., Popp J. Recent progress in surface-enhanced Raman spectroscopy for biological and biomedical applications: from cells to clinics. Chem Soc Rev 2017; 46: 3945–3961, https://doi.org/10.1039/c7cs00172j.
  38. Kahraman M., Mullen E.R., Korkmaz A., Wachsmann-Hogiu S. Fundamentals and applications of SERS-based bioanalytical sensing. Nanophotonics 2017; 6(5): 831–852, https://doi.org/10.1515/nanoph-2016-0174.
  39. Laing S., Jamieson L.E., Faulds K., Graham D. Surface-enhanced Raman spectroscopy for in vivo biosensing. Nat Rev Chem 2017; 1(8): 0060, https://doi.org/10.1038/s41570-017-0060.
  40. Hu J., Wang L., Li F., Han Y.L., Lin M., Lu T.J., Xu F. Oligonucleotide-linked gold nanoparticle aggregates for enhanced sensitivity in lateral flow assays. Lab Chip 2013; 13(22): 4352–4357.
  41. Banerjee R., Jaiswal A. Recent advances in nanoparticle-based lateral flow immunoassay as a point-of-care diagnostic tool for infectious agents and diseases. Analyst 2018; 143(9): 1970–1996, https://doi.org/10.1039/c8an00307f.
  42. Baron V.O., Chen M., Clark S.O., Williams A., Dholakia K., Gillespie S.H. Detecting phenotypically resistant mycobacterium tuberculosis using wavelength modulated Raman spectroscopy. Methods Mol Biol 2018; 1736: 41–50, https://doi.org/10.1007/978-1-4939-7638-6_4.
  43. Cheong Y., Kim Y.J., Kang H., Choi S., Lee H.J. Rapid label-free identification of Klebsiella pneumoniae antibiotic resistant strains by the drop-coating deposition surface-enhanced Raman scattering method. Spectrochim Acta A Mol Biomol Spectrosc 2017; 183: 53–59, https://doi.org/10.1016/j.saa.2017.04.044.
  44. Kallaway C., Almond L.M., Barr H., Wood J., Hutchings J., Kendall C., Stone N. Advances in the clinical application of Raman spectroscopy for cancer diagnostics. Photodiagnosis Photodyn Ther 2013; 10(3): 207–219, https://doi.org/10.1016/j.pdpdt.2013.01.008.
  45. Boschetto F., Adachi T., Horiguchi S., Fainozzi D., Parmigiani F., Marin E., Zhu W., McEntire B., Yamamoto T., Kanamura N., Mazda O., Ohgitani E., Pezzotti G. Monitoring metabolic reactions in Staphylococcus epidermidis exposed to silicon nitride using in situ time-lapse Raman spectroscopy. J Biomed Opt 2018; 23(5): 1–10, https://doi.org/10.1117/1.jbo.23.5.056002.
  46. Chen L., Mungroo N., Daikuara L., Neethirajan S. Label-free NIR-SERS discrimination and detection of foodborne bacteria by in situ synthesis of Ag colloids. J Nanobiotechnology 2015; 13(1): 45, https://doi.org/10.1186/s12951-015-0106-4.
  47. Mungroo N.A., Oliveira G., Neethirajan S. SERS based point-of-care detection of food-borne pathogens. Mikrochim Acta 2016; 183(2): 697–707, https://doi.org/10.1007/s00604-015-1698-y.
  48. Willemse-Erix D., Bakker-Schut T., Slagboom-Bax F., Jachtenberg J., Lemmensden N.В., Toom В., Papagiannitsis C.C., Kuntaman K., Puppels G., van Belkum A., Severin J.A., Goessens W., Maquelin K. Rapid typing of extended-spectrum beta-lactamase- and carbapenemase-producing Escherichia coli and Klebsiella pneumoniae isolates by use of SpectraCell RA. J Clin Microbiol 2012; 50(4): 1370–1375, https://doi.org/10.1128/jcm.05423-11.
  49. Ravindranath S.P., Wang Y., Irudayaraj J. SERS driven cross-platform based multiplex pathogen detection. Sens Actuators B Chem 2011; 152(2): 183–190, https://doi.org/10.1016/j.snb.2010.12.005.
  50. Chen J., Wu X., Huang Y.-W., Zhao Y. Detection of E. coli using SERS active filters with silver nanorod array. Sensors Actuators B Chem 2014; 191: 485–490, https://doi.org/10.1016/j.snb.2013.10.038.
  51. Halder S., Yadav K.K., Sarkar R., Mukherjee S., Saha P., Haldar S., Karmakar S., Sen T. Alteration of Zeta potential and membrane permeability in bacteria: a study with cationic agents. Springerplus 2015; 4(1): 672, https://doi.org/10.1186/s40064-015-1476-7.
  52. Zhou H., Yang D., Ivleva N.P., Mircescu N.E., Niessner R., Haisch C. SERS detection of bacteria in water by in situ coating with Ag nanoparticles. Anal Chem 2014; 86(3): 1525–1533, https://doi.org/10.1021/ac402935p.
  53. Beck J.D., Shang L., Li B., Marcus M.S., Hamers R.J. Discrimination between Bacillus species by impedance analysis of individual dielectrophoretically positioned spores. Anal Chem 2008; 80(10): 3757–3761, https://doi.org/10.1021/ac702113t.
  54. Braff W.A., Pignier A., Buie C.R. High sensitivity three-dimensional insulator-based dielec-trophoresis. Lab Chip 2012; 12(7): 1327–1331, https://doi.org/10.1039/c2lc21212a.
  55. Braff W.A., Willner D., Hugenholtz P., Rabaey K., Buie C.R. Dielectrophoresis-based discrimination of bacteria at the strain level based on their surface properties. PLoS One 2013; 8(10): e76751, https://doi.org/10.1371/journal.pone.0076751.
  56. Zellner P., Agah M. Silicon insulator-based dielectrophoresis devices for minimized heating effects. Electrophoresis 2012; 33(16): 2498–2507, https://doi.org/10.1002/elps.201100661.
  57. Barik A., Cherukulappurath S., Wittenberg N.J., Johnson T.W., Oh S.H. Dielectrophoresis-assisted Raman spectroscopy of intravesicular analytes on metallic pyramids. Anal Chem 2016; 88(3): 1704–1710, https://doi.org/10.1021/acs.analchem.5b03719.
  58. Schröder U.C., Ramoji A., Glaser U., Sachse S., Leiterer C., Csaki A., Hübner U., Fritzsche W., Pfister W., Bauer M., Popp J., Neugebauer U. Combined dielectrophoresis-Raman setup for the classification of pathogens recovered from the urinary tract. Anal Chem 2013; 85(22): 10717–10724, https://doi.org/10.1021/ac4021616.
  59. Schröder U.C., Bokeloh F., O’Sullivan M., Glaser U., Wolf K., Pfister W., Popp J., Ducrée J., Neugebauer U. Rapid, culture-independent, optical diagnostics of centrifugally captured bacteria from urine samples. Biomicrofluidics 2015; 9(4): 044118, https://doi.org/10.1063/1.4928070.
  60. Boardman A.K., Wong W.S., Premasiri W.R., Ziegler L.D., Lee J.C. Rapid detection of bacteria from blood with surface-enhanced Raman spectroscopy. Anal Chem 2016; 88(16): 8026–8035, https://doi.org/10.1021/acs.analchem.6b01273.
  61. Sinha S.S., Jones S., Pramanik A., Ray P.C. Nanoarchitecture based SERS for biomolecular fingerprinting and label-free disease markers diagnosis. Acc Chem Res 2016; 49(12): 2725–2735, https://doi.org/10.1021/acs.accounts.6b00384.
  62. Baritaux J.C., Simon A.C., Schultz E., Emain C., Laurent P. A study on identification of bacteria in environmental samples using single-cell Raman spectroscopy: feasibility and reference libraries. Environ Sci Pollut Res Int 2016; 23(9): 8184–8191, https://doi.org/10.1007/s11356-015-5953-x.
  63. Escoriza M.F., Vanbriesen J.M., Stewart S., Maier J. Studying bacterial metabolic states using Raman spectroscopy. Appl Spectrosc 2006; 60(9): 971–976, https://doi.org/10.1366/000370206778397290.
  64. Walter A., Schumacher W., Bocklitz T., Reinicke M., Rösch P., Kothe E., Popp J. From bulk to single-cell classification of the filamentous growing Streptomyces bacteria by means of Raman spectroscopy. Appl Spectrosc 2011; 65(10): 1116–1125, https://doi.org/10.1366/11-06329.
  65. Walter A., Kuhri S., Reinicke M., Bocklitz T., Schumacher W., Rösch P., Merten D., Büchel G., Kothe E., Popp J. Raman spectroscopic detection of Nickel impact on single Streptomyces cells — possible bioindicators for heavy metal contamination. J Raman Spectrosc 2012; 43: 1058–1064, https://doi.org/10.1002/jrs.3126.
  66. Almarashi J.F.M., Kapel N., Wilkinson T.S., Telle H.H. Raman spectroscopy of bacterial species and strains cultivated under reproducible conditions. Spectroscopy 2012; 27: 361–365, https://doi.org/10.1155/2012/540490.
  67. Qiu W., Xu H., Takalkar S., Gurung A.S., Liu B., Zheng Y., Guo Z., Baloda M., Baryeh K., Liu G. Carbon nanotube-based lateral flow biosensor for sensitive and rapid detection of DNA sequence. Biosens Bioelectron 2015; 64: 367–372, https://doi.org/10.1016/j.bios.2014.09.028.
  68. Xu J., Webb I., Poole P., Huang W.E. Label-free discrimination of Rhizobial bacteroids and mutants by single-cell Raman microspectroscopy. Anal Chem 2017; 89(12): 6336–6340, https://doi.org/10.1021/acs.analchem.7b01160.
  69. Assaf A., Cordella C.B., Thouand G. Raman spectroscopy applied to the horizontal methods ISO 6579:2002 to identify Salmonella spp. in the food industry. Anal Bioanal Chem 2014; 406(20): 4899–4910, https://doi.org/10.1007/s00216-014-7909-2.
  70. Gilbert N. Four stories of antibacterial breakthroughs. Nature 2018; 555(7695): S5–S7, https://doi.org/10.1038/d41586-018-02475-3.
  71. Cam D., Keseroglu K., Kahraman M., Sahin F., Culha M. Multiplex identification of bacteria in bacterial mixtures with surface-enhanced Raman scattering. J Raman Spectrosc 2010; 41(5): 484–489, https://doi.org/10.1002/jrs.2475.
  72. De Pablo J.G., Armistead F.J., Peyman S.A., Bonthron D., Lones M., Smith S., Evans S.D. Biochemical fingerprint of colorectal cancer cell lines using label-free live single-cell Raman spectroscopy. J Raman Spectrosc 2018; 49(8): 1323–1332, https://doi.org/10.1002/jrs.5389.
  73. Wang Y., Ravindranath S., Irudayaraj J. Separation and detection of multiple pathogens in a food matrix by magnetic SERS nanoprobes. Anal Bioanal Chem 2011; 399(3): 1271–1278, https://doi.org/10.1007/s00216-010-4453-6.
  74. Wang Y., Song Y., Tao Y., Muhamadali H., Goodacre R., Zhou N.Y., Preston G.M., Xu J., Huang W.E. Reverse and multiple stable isotope probing to study bacterial metabolism and interactions at the single cell level. Anal Chem 2016; 88(19): 9443–9450, https://doi.org/10.1021/acs.analchem.6b01602.
  75. Fan Z., Senapati D., Khan S.A., Singh A.K., Hamme A., Yust B., Sardar D., Ray P.C. Popcorn-shaped magnetic core-plasmonic shell multifunctional nanoparticles for the targeted magnetic separation and enrichment, label-free SERS imaging, and photothermal destruction of multidrug-resistant bacteria. Chemistry 2013; 19(8): 2839–2847, https://doi.org/10.1002/chem.201202948.
  76. Wang C., Madiyar F., Yu C., Li J. Detection of extremely low concentration waterborne pathogen using a multiplexing self-referencing SERS microfluidic biosensor. J Biol Eng 2017; 11: 9, https://doi.org/10.1186/s13036-017-0051-x.
  77. Fargasova A., Balzerova A., Prucek R., Sedláková M.H., Bogdanova K., Gallo J., Kolar M., Ranc V., Zboril R. Detection of prosthetic joint infection based on magnetically assisted surface enhanced Raman spectroscopy (MA-SERS). Anal Chem 2017; 89(12): 6598–6607, https://doi.org/10.1021/acs.analchem.7b00759.
  78. Naseer K., Amin A., Saleem M., Qazi J. Raman spectroscopy based differentiation of typhoid and dengue fever in infected human sera. Spectrochim Acta A Mol Biomol Spectrosc 2018; 206: 197–201, https://doi.org/10.1016/j.saa.2018.08.008.
  79. Bodelón G., Montes-García V., Pérez-Juste J., Pastoriza-Santos I. Surface-enhanced Raman scattering spectroscopy for label-free analysis of P. aeruginosa quorum sensing. Front Cell Infect Microbiol 2018; 8: 143, https://doi.org/10.3389/fcimb.2018.00143.
  80. Chen Y., Premasiri W.R., Ziegler L.D. Surface enhanced Raman spectroscopy of Chlamydia trachomatis and Neisseria gonorrhoeae for diagnostics, and extra-cellular metabolomics and biochemical monitoring. Sci Rep 2018; 8(1): 5163, https://doi.org/10.1038/s41598-018-23562-5.
  81. Ciobotă V., Burkhardt E.-M., Schumacher W., Rösch P., Kusel K., Popp J. The influence of intracellular storage material on bacterial identification by means of Raman spectroscopy. Anal Bioanal Chem 2010; 397: 2929–2937, https://doi.org/10.1007/s00216-010-3895-1.
  82. Gao X., Xu H., Baloda M., Gurung A.S., Xu L.-P., Wang T., Zhang X., Liu G. Visual detection of microRNA with lateral flow nucleic acid biosensor. Biosens Bioelectron 2014; 54: 578–584, https://doi.org/10.1016/j.bios.2013.10.055.
  83. Wang P., Pang S., Chen J., McLandsborough L., Nugen S.R., Fan M., He L. Label-free mapping of single bacterial cells using surface-enhanced Raman spectroscopy. Analyst 2016; 141(4): 1356–1362, https://doi.org/10.1039/c5an02175h.
  84. Liu T.Y., Chen Y., Wang H.H., Huang Y.L., Chao Y.C., Tsai K.T., Cheng W.C., Chuang C.Y., Tsai Y.H., Huang C.Y., Wang D.W., Lin C.H., Wang J.K., Wang Y.L. Differentiation of bacteria cell wall using Raman scattering enhanced by nanoparticle array. J Nanosci Nanotechnol 2012; 12: 5004–5008, https://doi.org/10.1166/jnn.2012.4941.
  85. Carey P.R., Heidari-Torkabadi H. New techniques in antibiotic discovery and resistance: Raman spectroscopy. Ann N Y Acad Sci 2015; 1354(1): 67–81, https://doi.org/10.1111/nyas.12847.
  86. Carey P.R., Whitmer G.R., Yoon M.J., Lombardo M.N., Pusztai-Carey M., Heidari-Torkabadi H., Che T. Measuring drug-induced changes in metabolite populations of live bacteria: real time analysis by Raman spectroscopy. J Phys Chem B 2018; 122(24): 6377–6385, https://doi.org/10.1021/acs.jpcb.8b03279.
  87. Mori H., Oda N., Abe S., Ueno T., Zhu W., Pernstich C., Pezzotti G. Raman spectroscopy insight into Norovirus encapsulation in Bombyx mori cypovirus cubic microcrystals. Spectrochim Acta A Mol Biomol Spectrosc 2018; 203: 19–30, https://doi.org/10.1016/j.saa.2018.05.066.
  88. Khan S., Ullah R., Khan A., Ashraf R., Ali H., Bilal M., Saleem M. Analysis of hepatitis B virus infection in blood sera using Raman spectroscopy and machine learning. Photodiagnosis Photodyn Ther 2018; 23: 89–93, https://doi.org/10.1016/j.pdpdt.2018.05.010.
  89. Sohail A., Khan S., Ullah R., Qureshi S.A., Bilal M., Khan A. Analysis of hepatitis C infection using Raman spectroscopy and proximity based classification in the transformed domain. Biomed Opt Express 2018; 9(5): 2041–2055, https://doi.org/10.1364/boe.9.002041.
  90. Thomm A.M., Schotthoefer A.M., Dupuis A.P., Kramer L.D., Frost H.M., Fritsche T.R., Harrington Y.A., Knox K.K., Kehl S.C. Development and validation of a serologic test panel for detection of Powassan virus infection in U.S. patients residing in regions where lyme disease is endemic. mSphere 2018; 3(1): e00467-17, https://doi.org/10.1128/msphere.00467-17.
  91. Hoch T., Breton E., Vatansever Z. Dynamic modeling of Crimean Congo hemorrhagic fever virus (CCHFV) spread to test control strategies. J Med Entomol 2018; 55(5): 1124–1132, https://doi.org/10.1093/jme/tjy035.
  92. Channon R.B., Yang Y., Feibelman K.M., Geiss B.J., Dandy D.S., Henry C.S. Development of an electrochemical paper-based analytical device for trace detection of virus particles. Anal Chem 2018; 90(12): 7777–7783, https://doi.org/10.1021/acs.analchem.8b02042.
  93. Schulze H.G., Rangan S., Piret J.M., Blades M.W., Turner R.F.B. Developing fully automated quality control methods for preprocessing Raman spectra of biomedical and biological samples. Appl Spectrosc 2018; 72(9): 1322–1340, https://doi.org/10.1177/0003702818778031.
  94. Brazhe N.A., Evlyukhin A.B., Goodilin E.A., Semenova A.A., Novikov S.M., Bozhevolnyi S.I., Chichkov B.N., Sarycheva A.S., Baizhumanov A.A., Nikelshparg E.I., Deev L.I., Maksimov E.G., Maksimov G.V., Sosnovtseva O. Probing cytochrome c in living mitochondria with surface-enhanced Raman spectroscopy. Sci Rep 2015; 5: 13793, https://doi.org/10.1038/srep13793.
  95. Guo H., Jornet J.M., Gan Q., Sun Z. Cooperative Raman spectroscopy for real-time in vivo nano-biosensing. IEEE Transactions on NanoBioscience 2017; 16(7): 571–584, https://doi.org/10.1109/tnb.2017.2749183.
  96. Guo S., Kohler A., Zimmermann B., Heinke R., Stöckel S., Rösch P., Popp J., Bocklitz T. Extended multiplicative signal correction based model transfer for Raman spectroscopy in biological applications. Anal Chem 2018; 90(16): 9787–9795, https://doi.org/10.1021/acs.analchem.8b01536.
  97. Lu X., Al-Qadiri H., Lin M., Rasco B. Application of mid-infrared and Raman spectroscopy to the study of bacteria. Food Bioproc Tech 2011; 4(6): 919–935, https://doi.org/10.1007/s11947-011-0516-8.
  98. Song Y., Kaster A.K., Vollmers J., Song Y., Davison P.A., Frentrup M., Preston G.M., Thompson I.P., Murrell J.C., Yin H., Hunter C.N., Huang W.E. Single-cell genomics based on Raman sorting reveals novel carotenoid-containing bacteria in the Red Sea. Microb Biotechnol 2017; 10(1): 125–137, https://doi.org/10.1111/1751-7915.12420.
  99. Sansano A., Lopez-Reyes G., Medina J., Rull F. Analysis of arctic carbonates profiles by Raman spectroscopy using exomars Raman laser spectrometer. EPSC Abstracts 2011. URL: https://meetingorganizer.copernicus.org/EPSC-DPS2011/EPSC-DPS2011-856-1.pdf.
  100. Eberhardt K., Stiebing C., Matthäus C., Schmitt M., Popp J. Advantages and limitations of Raman spectroscopy for molecular diagnostics: an update. Expert Rev Mol Diagn 2015; 15(6): 773–787, https://doi.org/10.1586/14737159.2015.1036744.
  101. Jehlička J., Culka A., Nedbalová L. Colonization of snow by microorganisms as revealed using miniature Raman spectrometers-possibilities for detecting carotenoids of psychrophiles on mars? Astrobiology 2016; 16(12): 913–924, https://doi.org/10.1089/ast.2016.1487.
  102. Jenkins C.A., Lewis P.D., Dunstan P.R., Harris D.A. Role of Raman spectroscopy and surface enhanced Raman spectroscopy in colorectal cancer. World J Gastrointest Oncol 2016; 8(5): 427–438, https://doi.org/10.4251/wjgo.v8.i5.427.
  103. Kochan K., Marzec K.M., Chruszcz-Lipska K., Jasztal A., Maslak E., Musiolik H., Chłopicki S., Baranska M. Pathological changes in the biochemical profile of the liver in atherosclerosis and diabetes assessed by Raman spectroscopy. Analyst 2013; 138(14): 3885–3890, https://doi.org/10.1039/c3an00216k.
  104. Neugebauer U., Rösch P., Popp J. Raman spectroscopy towards clinical application: drug monitoring and pathogen identification. Int J Antimicrob Agents 2015; 46: S35–S39, https://doi.org/10.1016/j.ijantimicag.2015.10.014.
  105. Tolstik Е., Osminkina L.A., Matthäus C., Burkhardt M., Tsurikov K.E., Natashina U.A., Timoshenko V.Y., Heintzmann R., Popp J., Sivakov V. Studies of silicon nanoparticles uptake and biodegradation in cancer cells by Raman spectroscopy. Nanomedicine 2016; 12(7): 1931–1940, https://doi.org/10.1016/j.nano.2016.04.004.
  106. Mehta H.H., Prater A.G., Shamoo Y. Using experimental evolution to identify druggable targets that could inhibit the evolution of antimicrobial resistance. J Antibiot (Tokyo) 2018; 71(2): 279–286, https://doi.org/10.1038/ja.2017.108.
  107. Gala U., Chauhan H. Principles and applications of Raman spectroscopy in pharmaceutical drug discovery and development. Expert Opin Drug Discov 2015; 10(2): 187–206, https://doi.org/10.1517/17460441.2015.981522.
  108. Zhao Q., Liu G., Zhang H., Zhou F., Li Y., Cai W. SERS-based ultrasensitive detection of organophosphorus nerve agents via substrate’s surface modification. J Hazard Mater 2017; 324(Pt B): 194–202, https://doi.org/10.1016/j.jhazmat.2016.10.049.
  109. American security today: Informational Internet-portal. URL: https://americansecuritytoday.com/flir-receives-54-2m-order-us-dod-dr-sko-systems/.
Andryukov B.G., Karpenko A.A., Matosova E.V., Lyapun I.N. Raman Spectroscopy as a Modern Diagnostic Technology for Study and Indication of Infectious Agents (Review). Sovremennye tehnologii v medicine 2019; 11(4): 161, https://doi.org/10.17691/stm2019.11.4.19


Journal in Databases

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg

SCImago Journal & Country Rank