Today: Nov 23, 2024
RU / EN
Last update: Oct 30, 2024
Technologies for Prediction of Preeclampsia

Technologies for Prediction of Preeclampsia

Rokоtyanskаya E.A., Panova I.A., Malyshkina A.I., Fetisova I.N., Fetisov N.S., Kharlamova N.V., Kuligina M.V.
Key words: preeclampsia; arterial hypertension; genetic polymorphisms; prediction of preeclampsia; pregnancy complication.
2020, volume 12, issue 5, page 78.

Full text

html pdf
1606
1799

The aim of the study was to develop technologies for predicting the development of preeclampsia (PE) based on biomedical and molecular-genetic predictors and the calculation of individual risks for this pregnancy complication.

Materials and Methods. The study involved 457 pregnant women. Of them, 147 women had chronic arterial hypertension (CAH); 109 pregnant women had CAH and secondary preeclampsia (PE); 201 patients had PE. The control group consisted of 105 pregnant women without hypertensive disorders or proteinuria. We performed a retrospective analysis of gestation course and labor outcomes, calculated risk factors using the Open Epi system and logistic regression method. Polymorphisms of genes controlling the vascular tone were identified in venous blood.

Results. There were identified risk factors for developing PE, including those in women with CAH: chronic pyelonephritis; baseline mean AP above 95 mm Hg and diastolic AP above 80 mm Hg; body mass index over 30; family history of arterial hypertension. The following were identified as additional predictors of PE: perinatal loss; premature labor; spontaneous miscarriage; PE and closed craniocerebral injuries in the past medical history; threatening miscarriage in the first trimester. Additional risk factors for PE in women with CAH were found: lack of regular antihypertensive therapy before pregnancy and in the first trimester; chronic gastritis; first pregnancy; tobacco smoking.

Polymorphic variants of the NOS3 (-786)C allele in the genotype in combination with the heterozygous genotype in the AGTR2 1675G/A gene are associated with a high risk of CAH. The presence of alleles NOS3 (-786)T/C and NOS3 (-786)C, as well as a combination of alleles NOS3 (-786)C and NOS3 894G/T, is associated with PE. The presence of alleles AGT 704C, CYP11B2 (-344)T, and GNB3 825T/T in the genotype, both individually and in combination, is a risk factor for the development of PE secondary to CAH. The data obtained made it possible to develop a method for predicting the onset of PE in women with CAH and a model for calculating the individual risk of PE, which formed the basis for a computer program.

Conclusion. Calculating the individual risks of PE using the technologies proposed by the authors allows identifying pregnant women belonging to the high-risk group on a timely basis, which ensures high-quality implementation of preventive measures, provides a personalized approach and the possibility to prove the need for additional examination of this category of patients.

  1. WHO recommendations: policy of interventionist versus expectant management of severe pre-eclampsia before term. Geneva: World Health Organization; 2018.
  2. Polikarpov A.V., Aleksandrova G.A., Golubeva T.Yu., Tyurina E.M., Ogryzko E.V., Shelepova E.A. Osnovnye pokazateli zdorov’ya materi i rebenka, deyatel’nost’ sluzhby okhrany detstva i rodovspomozheniya v Rossiyskoy Federatsii [Main indicators of maternal and child health, the activities of the child welfare and obstetric service in the Russian Federation]. Moscow; 2018.
  3. Kholin A.M., Khodzhaeva Z.S., Gus A.I. Pathological placentation and prediction of preeclampsia and intrauterine growth restriction in the first trimester. Akusherstvo i ginekologiya 2018; 5: 12–19, https://doi.org/10.18565/aig.2018.5.12-19.
  4. Bushtyreva I.O., Kurochka M.P., Gayda O.V. Prognostic criteria for preeclampsia. Rossiyskiy vestnik akushera-ginekologa 2017; 17(2): 59–63, https://doi.org/10.17116/rosakush201717259-63.
  5. Muminova K.T. Possibilities of non-invasive post-genomics technologies in the prediction and early diagnosis of preeclampsia. Akusherstvo i ginekologiya 2018; 5: 5–10, https://doi.org/10.18565/aig.2018.5.5-10.
  6. Park F.J., Leung C.H., Poon L.C., Williams P.F., Rothwell S.J., Hyett J.A. Clinical evaluation of a first trimester algorithm predicting the risk of hypertensive disease of pregnancy. Aust N Z J Obstet Gynaecol 2013; 53(6): 532–539, https://doi.org/10.1111/ajo.12126.
  7. Akolekar R., Syngelaki A., Poon L., Wright D., Nicolaides K.H. Competing risks model in early screening for preeclampsia by biophysical and biochemical markers. Fetal Diagn Ther 2013; 33(1): 8–15, https://doi.org/10.1159/000341264.
  8. Kholin A.M., Muminova K.T., Balashov I.S., Khodzhaeva Z.S., Borovikov P.I., Ivanets T.Yu., Gus A.I. Prediction of preeclampsia in the first trimester of pregnancy: validation of screening algorithms in the Russian population. Akusherstvo i ginekologiya 2017; 8: 74–84, https://doi.org/10.18565/aig.2017.8.74-84.
  9. Kholin A.M., Muminova K.T., Nagoev T.M., Khodzhaeva Z.S., Gus A.I. First trimester prediction of preeclampsia based on maternal factors, biomarkers and 3D power Doppler of placental bed vascularization. Akusherstvo i ginekologiya 2018; 8: 56–65, https://doi.org/10.18565/aig.2018.8.56-65.
  10. Rolnik D.L., Wright D., Poon L.C., O’Gorman N., Syngelaki A., de Paco Matallana C., Akolekar R., Cicero S., Janga D., Singh M., Molina F.S., Persico N., Jani J.C., Plasencia W., Papaioannou G., Tenenbaum-Gavish K., Meiri H., Gizurarson S., Maclagan K., Nicolaides K.H. Aspirin versus placebo in pregnancies at high risk for preterm preeclampsia. N Engl J Med 2017; 377(7): 613–622, https://doi.org/10.1056/NEJMoa1704559.
  11. Volchek Y.A., Shyshko O.N., Spiridonova O.S., Mokhort T.V. Position of the model of the artificial neural network in medical expert systems. Juvenis scientia 2017; 9: 4–9.
  12. Khlestova G.V. Prognozirovanie i rannyaya diagnostika preeklampsii na osnove otsenki renin-angiotenzinovoy i vazopressin-akvaporinovoy sistem. Avtoref. dis. … kand. med. nauk [Prediction and early diagnosis of preeclampsia based on the assessment of the renin-angiotensin and vasopressin-aquaporin systems. PhD Thesis]. Moscow; 2018.
  13. Prozorovskaya K.N. Osobennosti profilya mikroRNK pri preeklampsii razlichnoy stepeni tyazhesti. Avtoref. dis. … kand. med. nauk [Features of the microRNA profile in preeclampsia of varying severity. PhD Thesis]. Moscow; 2018.
  14. Sivitskaya L.N., Danilenko N.G., Baranouskaya Е.I., Davydenko O.G. Preeclampsia: some genetic mechanisms of development. Meditsinskaya genetika 2014; 10(148): 3–9.
  15. Fetisova I.N., Panova I.A. Malyshkina A.I., Rokotyanskaya E.A., Ratnikova S.Yu., Smirnova E.V., Fetisov N.S., Nazarova A.O. Genetic aspects of the preeclampsia. Sovremennye problemy nauki i obrazovaniya 2014; 6, URL: http://www.science-education.ru/ru/article/view?id=15739.
  16. Fetisova I.N., Panova I.A., Rokotyanskaya E.A., Ratnikova S.Yu., Smirnova E.V., Fetisov N.S. The genetic factors which exert influence on preeclampsia development. Vestnik Ivanovskoy meditsinskoy akademii 2015; 20(3): 13–16.
  17. Lin R., Lei Y., Yuan Z., Ju H., Li D. Angiotensinogen gene M235T and T174M polymorphisms and susceptibility of pre-eclampsia: a meta-analysis. Ann Hum Genet 2012; 76(5): 377–386, https://doi.org/10.1111/j.1469-1809.2012.00722.x.
  18. Dusse F., Frey U.H., Bilalic A., Dirkmann D., Görlinger K., Siffert W., Peters J. The GNB3 C825T polymorphism influences platelet aggregation in human whole blood. Pharmacogenet Genomics 2012; 22(1): 43–49, https://doi.org/10.1097/FPC.0b013e32834e1674.
  19. Panova I.A., Malyshkina A.I., Rokotyanskaya E.A., Smirnova E.V. Risk factors for addition of preeclampsia in women with chronic hypertension. Rossiyskiy vestnik akushera-ginekologa 2014; 14(6): 37–42.
  20. Dolgushina V.F., Chulkov V.S., Vereina N.K., Sinitsyn S.P. Obstetric complications in different forms of hypertension in pregnant women. Akusherstvo i ginekologiya 2013; 10: 33–39.
  21. Rahimi Z., Aghaei A., Vaisi-Raygani A. AT2R-1332 G:A polymorphism and its interaction with AT1R 1166 A:C, ACE I/D and MMP-9-1562 C:T polymorphisms: risk factors for susceptibility to preeclampsia. Gene 2014; 15; 538(1): 176–181, https://doi.org/10.1016/j.gene.2013.12.013.
  22. Chulkov V.S. Prognozirovanie i profilaktika oslozhneniy pri razlichnykh formakh arterial’noy gipertenzii u beremennykh. Avtoref. dis. … dokt. med. nauk [Prediction and prevention of complications in various forms of arterial hypertension in pregnant women. DSc Thesis]. Ekaterinburg; 2016.
  23. Seremak-Mrozikiewicz A., Drews K., Barlik M., Sieroszewski P., Grześkowiak E., Mrozikiewicz P. The significance of –786T > C polymorphism of endothelial NO synthase (eNOS) gene in severe preeclampsia. J Matern Fetal Neonatal Med 2011; 24(3): 432–436, https://doi.org/10.3109/14767058.2010.511329.
  24. Hawkins T.L.A., Roberts J.M., Mangos G.J., Davis G.K., Roberts L.M., Brown M.A. Plasma uric acid remains a marker of poor outcome in hypertensive pregnancy: a retrospective cohort study. BJOG 2012; 119(4): 484–492, https://doi.org/10.1111/j.1471-0528.2011.03232.x.
  25. Loskutova T.A., Voronin K.V., Turchin V.N. Prognosis of pregnancy complications in women with preeclampsia. Meditsinskiy zhurnal 2014; 1: 81–84.
  26. Zavarin V.V., Kalinkin M.N., Rad’kov O.V. Role of gene-gene interactions of vasoactive genes in the formation of predisposition to preeclampsia. Fundamental’nye issledovaniya 2011; 11: 36–38, URL: http://www.fundamental-research.ru/ru/article/view?id=28938.
  27. Malyshkina A.I., Panova I.A., Yasinskiy I.F., Rokotyanskaya E.A., Nazarov S.B. Neuro_Chronic neural network system for predicting the addition of preeclampsia in pregnant women with chronic arterial hypertension. Certificate of state registration of the computer program 2018612460. 2018.
  28. Panova I.A., Rokоtyanskаya E.A., Yasinskiy I.F., Malyshkina A.I., Nazarov S.B., Pareyshvili V.V., Bogatova I.K. The neural network technology application for prediction of preeclampsia in pregnant women with chronic arterial hypertension. Sovremennye tehnologii v medicine 2018; 10(4): 151, https://doi.org/10.17691/stm2018.10.4.18.
  29. Fetisova I.N., Malyshkina A.I., Panova I.A., Zinchenko R.A., Fetisov N.S., Rokotyanskaya E.A. A method for predicting the risk of preeclampsia in women with chronic arterial hypertension. Patent RU 2699974. 2019.
  30. Panova I.A., Rokotyanskaya E.A., Nazarov S.B., Malyshkina A.I., Snegirev A.V. An automated program for predicting the development of preeclampsia in pregnant women. Certificate of state registration of a computer program 2019613074. 2019.
Rokоtyanskаya E.A., Panova I.A., Malyshkina A.I., Fetisova I.N., Fetisov N.S., Kharlamova N.V., Kuligina M.V. Technologies for Prediction of Preeclampsia. Sovremennye tehnologii v medicine 2020; 12(5): 78, https://doi.org/10.17691/stm2020.12.5.09


Journal in Databases

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg

SCImago Journal & Country Rank