Today: Nov 21, 2024
RU / EN
Last update: Oct 30, 2024
Technology for Repairing Osteomyelitic Bone Defects Using Autologous Mesenchymal Stromal Cells on a Collagen Matrix in Experiment

Technology for Repairing Osteomyelitic Bone Defects Using Autologous Mesenchymal Stromal Cells on a Collagen Matrix in Experiment

Mitrofanov V.N., Zhivtsov O.P., Orlinskaya N.Yu., Davydenko D.V., Charykova I.N., Aleinik D.Ya.
Key words: chronic osteomyelitis; mesenchymal stem cells; repair of bone defects; regenerative technologies.
2021, volume 13, issue 1, page 42.

Full text

html pdf
1557
1313

The aim of the study was to develop a technology for repairing an osteomyelitic bone defect using autologous adipose tissue mesenchymal stromal cells (MSCs) bound to a collagen matrix and to test the efficacy of this technique.

Materials and Methods. The study was carried out with 17 rabbits. A bone defect was created using a milling cutter applied to the proximal third of the leg. The wound (8.0×4.0 mm and a depth of 4.0 mm) involved the periosteum, cortical layer, and cancellous substance. Staphylococcus aureus strain was used as an infectious agent.

After the development of chronic osteomyelitis, the animals underwent osteonecrectomy. In the study group, autologous MSCs in Collatamp EG collagen carrier were placed into the bone defect. MSCs were obtained from adipose tissue and cultured in the matrix for 5 days. In control, the defect was filled with the collagen matrix without cells.

Results. On day 14 upon the initiation of chronic osteomyelitis, bacteriological examination of the discharge from the fistula showed the presence of mixed bacterial flora (Staphylococcus aureus and Escherichia coli) in all operated animals. Results of X-ray, laboratory, and histological tests confirmed the formation of a focus of chronic osteomyelitis.

Two months after the treatment (collagen with or without MSCs) began, all animals of the study group showed mature bone tissue regenerated in the affected zone. In the control group, proliferation of osteoblasts on the surface of the bone trabeculae was also observed; however, mature osteoid tissue was more often detected in the study group (35.0 vs 20.0% in control). In the study group (MSCs + collagen matrix), there was a decrease in bone marrow fibrosis (50.0 vs 100.0% in control) and cartilage formation (30.0 and 66.7%, respectively). After full treatment, newly formed bone trabeculae were detected more often (100.0 vs 60.0% in control); they were more mature and filled the defect area more efficiently.

Conclusion. Our results indicate that the use of a collagen matrix with autologous MSCs is a promising plastic material for repairing osteomyelitic defects following necrectomy.

The MSCs were able to increase the density of the filling material in the bone cavity, significantly accelerate the formation of bone beams around the matrix, and increase the tissue volume around the implant. The presence of MSCs significantly decreased the interference of a connective tissue component with osteogenesis and chondrogenesis.

  1. Maiborodin I.V., Shevela A.I., Morozov V.V., Mikheeva T.V., Figurenko N.F., Maslov R.V., Maiborodina V.I. The influence of extracellular vesicles (exosomes) of mesenchymal stromal cells on bone tissue regeneration. Novosti khirurgii 2019; 27(2): 196–203.
  2. Lepekhova S.A., Qiao G., Goldberg O.A., Tishkov N.V., Qiao L., Kurganskiy I.S., Inozemtsev P.O., Fedorova L.I. Stimulation of reparative regeneration of supporting tissue under conditions of delayed apposition of fragments. Sibirskiy nauchnyy meditsinskiy zhurnal 2019; 39(4): 85–92, https://doi.org/10.15372/ssmj20190411.
  3. Medkov M.A., Grishchenko D.N., Klimov M.A., Kuryavyi V.G., Apanasevich V.I. Calcium-phosphate X-ray contrast cements for reconstruction of bone tissue. Himicheskaa tehnologia 2019; 20(5): 194–199.
  4. Yurova K.A., Khaziakhmatova O.G., Malashchenko V.V., Norkin I.K., Ivanov P.A., Khlusov I.A., Shunkin E.O., Todosenko N.M., Melashchenko E.S., Litvinova L.S. Cellular-molecular aspects of inflammation, angiogenesis and osteogenesis. A short review. Tsitologiya 2020; 62(5): 305–315.
  5. Rubnikovich S.P., Kuz’menko E.V., Denisova Yu.L., Andreeva V.A. Effektivnost’ primeneniya stvolovykh kletok dlya regeneratsii kostnoy tkani. V kn.: Dostizheniya fundamental’noy, klinicheskoy meditsiny i farmatsii [The effectiveness of using stem cells for bone tissue regeneration. In: Achievements of fundamental, clinical medicine and pharmacy]. Vitebsk; 2020; p. 160–161.
  6. Murzich A.E., Pashkevich L.A., Zhernasechanka H.A. Experimental justification of the method of mesenchymal stem cell autotransplantation for regeneration of the femoral head bone tissue. Izvestiya Natsional’noy akademii nauk Belarusi. Seriya meditsinskikh nauk 2020; 17(1): 7–19, https://doi.org/10.29235/1814-6023-2020-17-1-7-19.
  7. Gordienko I.I., Tsap N.A., Borisov S.A., Valamina I.E. Reparation of bone tissue in the area of open fracture consolidation in tubular bone in laboratory animals. An experimental study. Detskaa hirurgia 2020; 24(2): 96–100.
  8. Reznik L.B., Stasenko I.V., Negrov D.A. Results of using various types of implants in experimental management of long bone osteomyelitic defects. Genij ortopedii 2016; 4: 81–87.
  9. Krivenko S.N., Popov S.V. Replacement of osteal defects at the patients with a traumatic osteomyelitis of long bones. Vestnik neotloznoj i vosstanovitelʹnoj hirurgii 2020; 5(2): 138–145.
  10. Garaev M.R., Panteleev V.S., Nartaylakov M.A., Dorofeev V.D., Inyushev D.V., Golkov D.S. Surgical treatment of chronic osteomyelitis. Kreativnaa hirurgia i onkologia 2019; 9(3): 209–215, https://doi.org/10.24060/2076-3093-2019-9-3-209-215.
  11. De Ugarte D.A., Morizono K., Elbarbary A., Alfonso Z., Zuk P.A., Zhu M., Dragoo J.L., Ashjian P., Thomas B., Benhaim P., Chen I., Fraser J., Hedrick M.H. Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells Tissues Organs 2003; 174(3): 101–109, https://doi.org/10.1159/000071150.
  12. Im G.I., Shin Y.W., Lee K.B. Do adipose tissue-derived mesenchymal stem cells have the same osteogenic and chondrogenic potential as bone marrow-derived cells? Osteoarthritis Cartilage 2005; 13(10): 845–853, https://doi.org/10.1016/j.joca.2005.05.005.
  13. Hayashi O., Katsube Y., Hirose M., Ohgushi H., Ito H. Comparison of osteogenic ability of rat mesenchymal stem cells from bone marrow, periosteum, and adipose tissue. Calcif Tissue Int 2008; 82(3): 238–247, https://doi.org/10.1007/s00223-008-9112-y.
  14. Lendeckel S., Jödicke A., Christophis P., Heidinger K., Wolff J., Fraser J.K., Hedrick M.H., Berthold L., Howaldt H.P. Autologous stem cells (adipose) and fibrin glue used to treat widespread traumatic calvarial defects: case report. J Craniomaxillofac Surg 2004; 32(6): 370–373, https://doi.org/10.1016/j.jcms.2004.06.002.
  15. Mesimäki K., Lindroos B., Törnwall J., Mauno J., Lindqvist C., Kontio R., Miettinen S., Suuronen R. Novel maxillary reconstruction with ectopic bone formation by GMP adipose stem cells. Int J Oral Maxillofac Surg 2009; 38(3): 201–209, https://doi.org/10.1016/j.ijom.2009.01.001.
  16. Corsetti A., Bahuschewskyj C., Ponzoni D., Langie R., dos Santos L.A., Camassola M., Nardi N.B., Puricelli E. Repair of bone defects using adipose-derived stem cells combined with alpha-tricalcium phosphate and gelatin sponge scaffolds in a rat model. J Appl Oral Sci 2017; 25(1): 10–19, https://doi.org/10.1590/1678-77572016-0094.
  17. Arrigoni E., de Gerolamo L., Di Giancamillo A., Stanco D., Dellavia C., Carnelli D., Campagnol M., Domeneghini C., Brini A.T. Adipose-derived stem cells and rabbit bone regeneration: histomorphometric, immunohistochemical and mechanical characterization. J Orthop Sci 2013; 18(2): 331–339, https://doi.org/10.1007/s00776-012-0349-y.
  18. Fang B., Liu Y., Zheng D., Shan S., Wang C., Gao Y., Wang J., Xie Y., Zhang Y., Li Q. The effects of mechanical stretch on the biological characteristics of human adipose-derived stem cells. J Cell Mol Med 2019; 23(6): 4244–4255, https://doi.org/10.1111/jcmm.14314.
  19. Zhivtsov O.P., Aleynik D.Ya., Orlinskaya N.Yu., Mitrofanov V.N. Peculiarities of bone tissue regeneration in conditions of a cell engineering construction for restoring bone defect in a rabbit. Mezdunarodnyj zurnal prikladnyh i fundamental'nyh issledovanij 2019; 11: 54–59, https://doi.org/10.17513/mjpfi.12931.
  20. Reznik L.B., Borzunov D.Yu., Mokhovikov D.S., Stasenko I.V. Experience with long bones defects replacement on the basis of combined use of transosseous osteosynthesis and osteoconductive materials in clinical practice. Politravma 2017; 2: 16–22.
  21. Glukhov A.A., Andreev A.A., Malkina N.A. Ultrasonic treatment and application of collagen in the treatment of experimental chronic osteomyelitis. Khirurgiya. Prilozhenie k zhurnalu Consilium Medicum 2017; 1: 62–70.
  22. Aleynik D.Y., Charykova I.N., Sidorova T.I. Investigation of a new bone replacement material on the in vitro model. Tekhnologii zhivykh sistem 2013; 10(8): 38–42.
  23. Dominici M., Le Blanc K., Mueller I., Slaper-Cortenbach I., Marini F.C., Krause D.S., Deans R.J., Keating A., Prockop D.J., Horwitz E.M. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006; 8(4): 315–317, https://doi.org/10.1080/14653240600855905.
  24. Seebach E., Holschbach J., Buchta N., Bitsch R.G., Kleinschmidt K., Richter W. Mesenchymal stromal cell implantation for stimulation of long bone healing aggravates Staphylococcus aureus induced osteomyelitis. Acta Biomater 2015; 21: 165–177, https://doi.org/10.1016/j.actbio.2015.03.019.
  25. Yoshitani J., Kabata T., Arakawa H., Kato Y., Nojima T., Hayashi K., Tokoro M., Sugimoto N., Kajino Y., Inoue D., Ueoka K., Yamamuro Y., Tsuchiya H. Combinational therapy with antibiotics and antibiotic-loaded adipose-derived stem cells reduce abscess formation in implant-related infection in rats. Sci Rep 2020; 10(1): 11182, https://doi.org/10.1038/s41598-020-68184-y.
  26. Wagner J.M., Reinkemeier F., Wallner C., Dadras M., Huber J., Schmidt S.V., Drysch M., Dittfeld S., Jaurich H., Becerikli M., Becker K., Rauch N., Duhan V., Lehnhardt M., Behr B. Adipose-derived stromal cells are capable of restoring bone regeneration after post-traumatic osteomyelitis and modulate B-cell response. Stem Cells Transl Med 2019; 8(10): 1084–1091, https://doi.org/10.1002/sctm.18-0266.
Mitrofanov V.N., Zhivtsov O.P., Orlinskaya N.Yu., Davydenko D.V., Charykova I.N., Aleinik D.Ya. Technology for Repairing Osteomyelitic Bone Defects Using Autologous Mesenchymal Stromal Cells on a Collagen Matrix in Experiment. Sovremennye tehnologii v medicine 2021; 13(1): 42, https://doi.org/10.17691/stm2021.13.1.05


Journal in Databases

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg

SCImago Journal & Country Rank