Today: Nov 23, 2024
RU / EN
Last update: Oct 30, 2024
Cytotoxicity of Xenogeneic Pericardium Preserved by Epoxy Cross-Linking Agents

Cytotoxicity of Xenogeneic Pericardium Preserved by Epoxy Cross-Linking Agents

Bondarenko N.A., Surovtseva M.A., Lykov А.P., Kim I.I., Zhuravleva I.Yu., Poveschenko О.V.
Key words: xenopericardium; glutaraldehyde; diepoxide compounds; pentaepoxide compounds; endothelial cells; multipotent mesenchymal stem cells; fibroblasts.
2021, volume 13, issue 4, page 27.

Full text

html pdf
1573
1126

The aim of the study was to assess the cytotoxic effect of xenopericardial biomaterial treated with di- and pentaepoxides on the cell cultures in vitro.

Materials and Methods. Samples of bovine and porcine pericardium were used in the work. Three different modes were employed for preservation: 1) 0.625% solution of glutaraldehyde (GA) and a two-fold change on days 2 and 7; 2) 5% solution of ethylene glycol diglycidyl ether (EGDE) changed on day 2; 3) 5% EGDE solution for 10 days, then 2% pentaepoxide solution also for 10 days. The cytotoxicity of the biomaterial was assessed by the extraction method. To determine the cytotoxicity of the biomaterial, EA.hy926 cells, multipotent mesenchymal stem cells (MMSCs), and fibroblasts were used. Cell viability was determined by the MTT test. The level of apoptosis and necrosis in the cell cultures was assessed by staining with acridine orange and ethidium bromide after cultivation with xenopericardial extracts employing different modes of preservation.

Results. Extracts of bovine and porcine pericardium preserved with GA have been found to have the greatest toxic effect on the cell cultures showing 20–33% reduction of cell viability. Extracts from bovine and porcine pericardium preserved with di- and pentaepoxy compounds do not have a toxic effect on endothelial cells, MMSCs, and fibroblasts since cell viability reduction is by no more than 15%. The lowest level of apoptosis and necrosis is observed in the cell cultures under the influence of extracts from the pericardium, preserved with diepoxide and pentaepoxide compounds.

Conclusion. According to the MTT test for cytotoxicity and determination of the level of apoptosis and necrosis in cell cultures, bovine and porcine pericardia treated with di- and pentaepoxides have been established to have no cytotoxic effect on the culture of endothelial EA.hy926 cells, MMSCs, fibroblasts in vitro, whereas GA, in comparison with di- and pentaepoxides, has a toxic impact on the cells.

  1. Alperi А., Hernandez-Vaquero D., Pascual I., Diaz R., Silva I., Alvarez-Cabo R., Avanzas P., Moris C. Aortic valve replacement in young patients: should the biological prosthesis be recommended over the mechanical? Ann Transl Med 2018; 6(10): 183, https://doi.org/10.21037/atm.2018.02.21.
  2. Nojiri C., Okano T., Grainger D., Park K.D., Nakahama S., Suzuki K., Kim S.W. Evaluation of nonthrombogenic polymers in a new rabbit A-A shunt model. ASAIO Trans 1987; 33(3): 596–601.
  3. Nishi C., Nakajima N., Ikada Y. In vitro evaluation of cytotoxicity of diepoxy compounds used for biomaterial modification. J Biomed Mater Res 1995; 29(7): 829–834, https://doi.org/10.1002/jbm.820290707.
  4. Sung H.W., Hsu H.L., Hsu C.S. Effects of various chemical sterilization methods on the crosslinking and enzymatic degradation characteristics of an epoxy-fixed biological tissue. J Biomed Mater Res 1997; 37(3): 376–383, https://doi.org/10.1002/(sici)1097-4636 (19971205)37:3376::aid-jbm83.0.co;2-i.
  5. Lohre J.M., Baclig L., Wickham E., Guida S., Farley J., Thyagarajan K., Tu R., Quijano R.C. Evaluation of epoxy ether fixed bovine arterial grafts for mutagenic potential. ASAIO J 1993; 39(2): 106–113.
  6. Trofimov B.A., Zhuravleva I.Yu., Oparina L.A., Sukhikh A.S., Vysotskaya O.V., Borisov V.V., Gusarova N.K. Penta-O-{1-[2-(glycidyloxy)ethoxy]ethyl}-D-glucopyranose: synthesis and application for the preservation of cardiovascular bioprostheses. Russ Chem Bull 2015; 64: 1451–1457, https://doi.org/10.1007/s11172-015-1031-2.
  7. Sung H.W., Hsu C.S., Wang S.P., Hsu H.L. Degradation potential of biological tissues fixed with various fixatives: an in vitro study. J Biomed Mater Res 1997; 35(2): 147–155, https://doi.org/10.1002/(sici)1097-4636 (199705)35:2147::aid-jbm23.0.co;2-n.
  8. Zhuravleva I.Y., Karpova E.V., Oparina L.A., Poveschenko O.V., Surovtseva M.A., Titov A.T., Ksenofontov A.L., Vasilieva M.B., Kuznetsova E.V., Bogachev-Prokophiev A.V., Trofimov B.A. Cross-linking method using pentaepoxide for improving bovine and porcine bioprosthetic pericardia: a multiparametric assessment study. Mater Sci Eng C Mater Biol Appl 2021; 118: 111473, https://doi.org/10.1016/j.msec.2020.111473.
  9. Guo G., Jin L., Jin W., Chen L., Lei Y., Wang Y. Radical polymerization-crosslinking method for improving extracellular matrix stability in bioprosthetic heart valves with reduced potential for calcification and inflammatory response. Acta Biomater 2018; 82: 44–55, https://doi.org/10.1016/j.actbio.2018.10.017.
  10. Ribble D., Goldstein N.B., Norris D.A., Shellman Y.G. A simple technique for quantifying apoptosis in 96-well plates. BMC Biotechnology 2005; 5: 12, https://doi.org/10.1186/1472-6750-5-12.
  11. Elagin V., Kuznetsova D., Grebenik E., Zolotov D.A., Istranov L., Zharikova T., Istranova E., Polozova A., Reunov D., Kurkov A., Shekhter A., Gafarova E.R., Asadchikov V., Borisov S.M., Dmitriev R.I., Zagaynova A., Timashev P. Multiparametric optical bioimaging reveals the fate of epoxy crosslinked biomeshes in the mouse subcutaneous implantation model. Front Bioeng Biotechnol 2020; 8: 107, https://doi.org/10.3389/fbioe.2020.00107.
  12. Kim S.S., Lim S.H., Cho S.W., Gwak S.J., Hong Y.S., Chang B.C., Park M.H., Song K.W., Choi C.Y., Kim B.S. Tissue engineering of heart valves by recellularization of glutaraldehyde-fixed porcine valves using bone marrow-derived cells. Exp Mol Med 2006; 38(3): 273–283, https://doi.org/10.1038/emm.2006.33.
  13. Siddiqui R.F., Abraham J.R., Butany J. Bioprosthetic heart valves: modes of failure. Histopathology 2009; 55(2): 135–144, https://doi.org/10.1111/j.1365-2559.2008.03190.x.
  14. Umashankar P.R., Mohanan P.V., Kumari T.V. Glutaraldehyde treatment elicits toxic response compared to decellularization in bovine pericardium. Toxicol Int 2012; 19(1): 51–58, https://doi.org/10.4103/0971-6580.94513.
  15. Lopez-Moya M., Melgar-Lesmes P., Kolandaivelu K., de la Torre Hernández J.M., Edelman E.R., Balcells M. Optimizing glutaraldehyde-fixed tissue heart valves with chondroitin sulfate hydrogel for endothelialization and shielding against deterioration. Biomacromolecules 2018; 19(4): 1234–1244, https://doi.org/10.1021/acs.biomac.8b00077.
Bondarenko N.A., Surovtseva M.A., Lykov А.P., Kim I.I., Zhuravleva I.Yu., Poveschenko О.V. Cytotoxicity of Xenogeneic Pericardium Preserved by Epoxy Cross-Linking Agents. Sovremennye tehnologii v medicine 2021; 13(4): 27, https://doi.org/10.17691/stm2021.13.4.03


Journal in Databases

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg

SCImago Journal & Country Rank