Today: Jan 21, 2025
RU / EN
Last update: Dec 27, 2024
Intraoperative Neurophysiological Monitoring during Surgical Correction of Scoliosis for Postoperative Recovery of the Patient’s Motor Function

Intraoperative Neurophysiological Monitoring during Surgical Correction of Scoliosis for Postoperative Recovery of the Patient’s Motor Function

Arestova Yu.S., Sayfutdinov M.S., Savin D.M., Nasyrov M.Z., Ryabykh T.V., Ryabykh S.O.
Key words: spinal deformity; scoliosis; electromyography; neuromonitoring; motor-evoked potentials; physiotherapy.
2021, volume 13, issue 5, page 55.

Full text

html pdf
1345
1060

The aim of the investigation was to study the effect of adverse intraoperative events on the subclinical decrease in the functional state of the sensorimotor system of patients with scoliosis and their early postoperative rehabilitation.

Materials and Methods. The results of the examination of 30 adolescents of 13–16 years old with scoliosis before and after surgical correction were compared. Intraoperative neurophysiological monitoring was used by the method of transcranial evoked motor potentials. The patients were divided into two groups depending on the presence or absence of neurophysiological signs of damage to nerve structures during the operation.

Results. The amplitude of the M-responses of the muscles of the lower limbs in the postoperative period remains at a level close to the initial one, with a noticeable decrease in the amplitude of voluntary electromyography, which is expressed unevenly and to a greater extent in patients with intraoperative signs of hazard for the motor pathways of the spinal cord.

Conclusion. Adverse intraoperative events cause significant changes in the state of the motor system of patients with scoliosis and reduce the effectiveness of rehabilitation treatment in the postoperative period.

  1. Dolganova T.I., Dolganov D.V., Riabykh S.O. Diagnostic information value of EMG envelope algorithm for superficial paraspinal muscles in postural stereotypes of patients with scoliosis grades III and IV. Genij ortopedii 2018; 24(1): 57–63, https://doi.org/10.18019/1028-4427-2018-24-1-57-63.
  2. Shchurova E.N., Menshchikova T.I., Filimonova G.N. Comparison of ultrasonographic and morphological findings of paravertebral muscles at the apex of kyphoscoliosis in patients with neurofibromatosis type I. Genij ortopedii 2018; 24(1): 70–74, https://doi.org/10.18019/1028-4427-2018-24-1-70-74.
  3. Voitenkov V.B., Min’kin A.V., Ekusheva E.V., Skripchenko N.V., Samoilova I.G., Cherkashina I.V. Condition of the muscles of the back under lumbo-sacral orthotic treatment (literature review). Genij ortopedii 2018; 24(1): 102–107, https://doi.org/10.18019/1028-4427-2018-24-1-102-107.
  4. Holdefer R.N., Skinner S.A. Motor evoked potential recovery with surgeon interventions and neurologic outcomes: a meta-analysis and structural causal model for spine deformity surgeries. Clin Neurophysiol 2020; 131(7): 1556–1566, https://doi.org/10.1016/j.clinph.2020.03.024.
  5. Nagarajan L., Ghosh S., Dillon D., Palumbo L., Woodland P., Thalayasingam P., Lethbridge M. Intraoperative neurophysiology monitoring in scoliosis surgery in children. Clin Neurophysiol Pract 2019; 4: 11–17, https://doi.org/10.1016/j.cnp.2018.12.002.
  6. Saifutdinov M.S., Skripnikov A.A., Savin D.M., Ochirova P.V., Tret’iakova A.N. Methodological problems of intraoperative neuromonitoring during operative correction of spinal deformity (literature review). Genij ortopedii 2017; 23(1): 102–110, https://doi.org/10.18019/1028-4427-2017-23-1-102-110.
  7. Acharya S., Palukuri N., Gupta P., Kohli M. Transcranial motor evoked potentials during spinal deformity corrections — safety, efficacy, limitations, and the role of a checklist. Front Surg 2017; 4: 8, https://doi.org/10.3389/fsurg.2017.00008.
  8. Kobayashi K., Imagama S., Ito Z., Ando K., Hida T., Ito K., Tsushima M., Ishikawa Y., Matsumoto A., Nishida Y., Ishiguro N. Transcranial motor evoked potential wave form changes in corrective fusion for adolescent idiopathic scoliosis. J Neurosurg Pediatr 2017; 19(1): 108–115, https://doi.org/10.3171/2016.6.peds16141.
  9. Kim D.G., Jo S.R., Park Y.S., Hyun S.J., Kim K.J., Jahng T.A., Kim H.J., Park K.S. Multi-channel motor evoked potential monitoring during anterior cervical discectomy and fusion. Clin Neurophysiol Pract 2017; 2: 48–53, https://doi.org/10.1016/j.cnp.2016.12.006.
  10. Ney J.P., Kessler D.P. Neurophysiological monitoring during cervical spine surgeries: longitudinal costs and outcomes. Clin Neurophysiol 2018; 129(11): 2245–2251, https://doi.org/10.1016/j.clinph.2018.08.002.
  11. Sayfutdinov M.S., Ryabykh S.O. Neurophysiological control of somatic motor system functional status during treatment of patients with spinal deformity. Nevrologiceskij zurnal 2018; 23(5): 248–258.
  12. Shein А.P., Sayphutdinov М.S., Skripnikov А.А., Krivoruchko G.А., Ryabykh S.О. Correlation of the intra-operative neuromonitoring data and EMG-characteristics of post-operative motor deficit in patients with spinal deformities. Khirurgiya. Zhurnal imeni N.I. Pirogova 2017; 4: 19–23, https://doi.org/10.17116/hirurgia2017419-23.
  13. WHO. Child growth standards. URL: https://www.who.int/tools/child-growth-standards.
  14. Shein A.P., Skripnikov A.A., Krivoruchko G.A. Bilateral interrelations of ENMG and EEG-characteristics of pyramid insufficiency in patients with the consequences of stroke and of brain injury. Bulletenʹ Vostocno-Sibirskogo naucnogo centra Rossijskoj akademii medicinskih nauk 2012; 2–2: 67–70.
  15. Shevtsov V.I., Shein A.P., Skripnikov A.A., Krivoruchko G.A. Reaktivnost’ i plastichnost’ kory golovnogo mozga v usloviyakh vazoaktivnoy kranioplastiki [Reactivity and plasticity of the cerebral cortex in vasoactive cranioplasty]. Kurgan: Dammi; 2006; 128 p.
  16. Domenech J., García-Martí G., Martí-Bonmatí L., Barrios C., Tormos J.M., Pascual-Leone A. Abnormal activation of the motor cortical network in idiopathic scoliosis demonstrated by functional MRI. Eur Spine J 2011; 20(7): 1069–1078, https://doi.org/10.1007/s00586-011-1776-8.
  17. Nagarajan L., Ghosh S., Dillon D., Palumbo L., Woodland P., Thalayasingam P., Lethbridge M. Intraoperative neurophysiology monitoring in scoliosis surgery in children. Clin Neurophysiol Pract 2019; 4: 11–17, https://doi.org/10.1016/j.cnp.2018.12.002.
  18. Charalampidis A., Jiang F., Wilson J.R.F., Badhiwala J.H., Brodke D.S., Fehlings M.G. The use of intraoperative neurophysiological monitoring in spine surgery. Global Spine J 2020; 10(1 Suppl): 104S–114S, https://doi.org/10.1177/2192568219859314.
  19. Melzack R., Wall P.D. Pain mechanisms: a new theory. Science 1965; 150(3699): 971–979, https://doi.org/10.1126/science.150.3699.971.
  20. Alatyrev V.I., Eremeev A.M., Zefirov L.N. Tonic defense reflexes and reflex reactions of skeletal muscles. Fiziologiceskij zurnal SSSR imeni I.M. Sechenova 1987; 73(2): 295–301.
  21. Alatyrev V.I., Eremeev A.M., Pleshchinskiy I.N. The effect of long-term nociceptive irritation on human motor functions. Fiziologiia cheloveka 1990; 16(3): 77–83.
  22. Nicolini-Panisson R.D.A., Tedesco A.P., Folle M.R., Donadio M.V.F. Selective dorsal rhizotomy in cerebral palsy: selection criteria and postoperative physical therapy protocols. Rev Paul Pediatr 2018; 36(1): 9, https://doi.org/10.1590/1984-0462/;2018;36;1;00005.
  23. Epifanov V.A., Epifanov A.V. Reabilitatsiya v nevrologii [Rehabilitation in neurology]. Moscow: GEOTAR-Media; 2015; 416 p.
  24. Erokhin A.N., Grigorovich K.A. The algorithm for choice of optimal mode for spinal cord electrostimulation in treatment of chronic pain syndrome. Neirokhirurgiya 2014; 2: 45–48.
  25. Shein A.P., Krivoruchko G.A., Prudnikova O.G. Electroneuromyographic assessment of the effectiveness of temporal epidural electroneurostimulation combined with robotic kinesiotherapy in the treatment of patients suffering from the consequences of spinal cord injury. Fiziologiia cheloveka 2015; 41(2): 98–104.
  26. Pleshchinskiy I.H., Alekseeva H.L. Spinal cord: afferent interactions. Fiziologiia cheloveka 1996; 22(1): 123–130.
  27. Holdefer R.N., Skinner S.A. Motor evoked potential recovery with surgeon interventions and neurologic outcomes: a meta-analysis and structural causal model for spine deformity surgeries. Clin Neurophysiol 2020; 131(7): 1556–1566, https://doi.org/10.1016/j.clinph.2020.03.024.
  28. Nagarajan L., Ghosh S., Dillon D., Palumbo L., Woodland P., Thalayasingam P., Lethbridge M. Intraoperative neurophysiology monitoring in scoliosis surgery in children. Clin Neurophysiol Pract 2019; 4: 11–17, https://doi.org/10.1016/j.cnp.2018.12.002.
  29. Charalampidis A., Jiang F., Wilson J.R.F., Badhiwala J.H., Brodke D.S., Fehlings M.G. The use of intraoperative neurophysiological monitoring in spine surgery. Global Spine J 2020; 10(1 Suppl): 104S–114S, https://doi.org/10.1177/2192568219859314.
  30. Shein A.P., Krivoruchko G.A., Schurova E.N., Kovalenko P.I., Pozdniakov A.V. The effect of spinal deformity grade on neurophysiological characteristics of sensomotor deficit. Hirurgia pozvonocnika 2007; 1: 35–43, https://doi.org/10.14531/ss2007.1.35-43.
Arestova Yu.S., Sayfutdinov M.S., Savin D.M., Nasyrov M.Z., Ryabykh T.V., Ryabykh S.O. Intraoperative Neurophysiological Monitoring during Surgical Correction of Scoliosis for Postoperative Recovery of the Patient’s Motor Function. Sovremennye tehnologii v medicine 2021; 13(5): 55, https://doi.org/10.17691/stm2021.13.5.07


Journal in Databases

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg

SCImago Journal & Country Rank