Today: Nov 22, 2024
RU / EN
Last update: Oct 30, 2024
Chronic Critical Illness: Current Aspects of the Problem (Review)

Chronic Critical Illness: Current Aspects of the Problem (Review)

Parfenov A.L., Razzhivin V.P., Petrova M.V.
Key words: chronic critical illness; persistent inflammation; persistent inflammation, immunodepression, and catabolic syndrome; post-intensive care syndrome; microbiome.
2022, volume 14, issue 3, page 70.

Full text

html pdf
1653
1368

Chronic resuscitation patients who have survived the acute phase of a disease represent a fast-growing cohort of patients requiring specialized medical assistant in intensive care and resuscitation units (ICRU) for several months or years. The term “chronic critical illness” (CCI) was proposed for such patients in the mid-80s of the last century. Patients with CCI make up from 5 to 20% of ICRU. Over time, they develop homeostasis disorders resulting in multiple organ failure and death. Mortality in CCI exceeds that of the majority of malignant neoplasms and functional dependence remains in most of survivors.

In the present review, the attempt is made to show the main links of CCI pathogenesis which, if acted upon, can prevent unfavorable outcome. The publications describing epidemiology of CCI, its outcomes, and clinical phenotype have been analyzed.

Several researchers consider CCI as a result of persistent inflammation, immunosuppression, and catabolism syndrome. Some works show the importance of nutrition for ICRU patients. The role of gastrointestinal tract in CCI formation has been noted. The effect of intensive therapy on microbiota of the ICRU patients has been demonstrated. Microbiome disturbances in dysbiosis and sepsis have been considered, as well as the effect of intestinal microbiome on the distant organs.

Post-intensive care syndrome is a significant constituent of CCI. The main sequelae of the syndrome, as well as the general questions of its prevention and treatment, have been denoted.

  1. Girard K., Raffin T.A. The chronically critically ill: to save or let die? Respir Care 1985; 30(5): 339–347.
  2. Hawkins R.B., Raymond S.L., Stortz J.A., Horiguchi H., Brakenridge S.C., Gardner A., Efron P.A., Bihorac A., Frederick M.S., Moore F.A., Moldawer L.L. Chronic critical illness and the persistent inflammation, immunosuppression, and catabolism syndrome. Front Immunol 2018; 9: 1511, https://doi.org/10.3389/fimmu.2018.01511.
  3. Piradov M.A., Suponeva N.A., Voznyuk I.A., Kondratyev A.N., Shchegolev A.V., Belkin A.A., Zaitsev O.S., Pryanikov I.V., Petrova M.V., Ivanova N.E., Gnedovskaya E.V., Ryabinkina Yu.V., Sergeev D.V., Iazeva E.G., Legostaeva L.A., Fufaeva E.V., Petrikov S.S.; Russian Workgroup on Chronic Disorders of Consciousness. Chronic disorders of consciousness: terminology and diagnostic criteria. The results of the first meeting of the Russian Working Group for Chronic Disorders of Consciousness. Annaly klinicheskoy i experimental’noy nevrologii 2020; 14(1): 5–16, https://doi.org/10.25692/acen.2020.1.1.
  4. Potapov A.A., Krylov V.V., Gavrilov A.G., Kravchuk A.D., Likhterman L.B., Petrikov S.S., Talypov A.E., Zakharova N.E., Oshorov A.V., Sychev A.A., Alexandrova E.V., Solodov A.A. Guidelines for the diagnosis and treatment of severe traumatic brain injury. Part 2. Intensive care and neuromonitoring. Voprosy nejrohirurgii im. N.N. Burdenko 2016; 80(1): 98–106, https://doi.org/10.17116/neiro201680198-106.
  5. Nelson J.E., Cox C.E., Hope A.A., Carson S.S. Chronic critical illness. Am J Respir Crit Care Med 2010; 182(4): 446–454, https://doi.org/10.1164/rccm.201002-0210ci.
  6. Loss S.H., Nunes D.S.L., Franzosi O.S., Salazar G.S., Teixeira C., Vieira S.R.R. Chronic critical illness: are we saving patients or creating victims? Rev Bras Ter Intensiva 2017; 29(1): 87–95, https://doi.org/10.5935/0103-507x.20170013.
  7. Shepherd S., Batra A., Lerner D.P. Review of critical illness myopathy and neuropathy. Neurohospitalist 2017; 7(1): 41–48, https://doi.org/10.1177/1941874416663279.
  8. Tankisi H., de Carvalho M., Z’Graggen W.J. Critical illness neuropathy. J Clin Neurophysiol 2020; 37(3): 205–207, https://doi.org/10.1097/wnp.0000000000000658.
  9. Kress J.P., Hall J.B. ICU-acquired weakness and recovery from critical illness. N Engl J Med 2014; 370(17): 1626–1635, https://doi.org/10.1056/nejmra1209390.
  10. Gentile L.F., Cuenca A.G., Efron P.A., Ang D., Bihorac A., McKinley B.A., Moldawer L.L., Moore F.A. Persistent inflammation and immunosuppression: a common syndrome and new horizon for surgical intensive care. J Trauma Acute Care Surg 2012; 72(6): 1491–1501, https://doi.org/10.1097/ta.0b013e318256e000.
  11. Mira J.C., Cuschieri J., Ozrazgat-Baslanti T., Wang Z., Ghita G.L., Loftus T.J., Stortz J.A., Raymond S.L., Lanz J.D., Hennessy L.V., Brumback B., Efron P.A., Baker H.V., Moore F.A., Maier R.V., Moldawer L.L., Brakenridge S.C. The epidemiology of chronic critical illness after severe traumatic injury at two level one trauma centers. Crit Care Med 2017; 45(12): 1989–1996, https://doi.org/10.1097/ccm.0000000000002697.
  12. Tompkins R.G. Genomics of injury: the Glue Grant experience. J Trauma Acute Care Surg 2015; 78(4): 671–686, https://doi.org/10.1097/ta.0000000000000568.
  13. Loss S.H., Marchese C.B., Boniatti M.M., Wawrzeniak I.C., Oliveira R.P., Nunes L.N., Victorino J.A. Prediction of chronic critical illness in a general intensive care unit. Rev Assoc Med Bras 2013; 59(3): 241–247, https://doi.org/10.1016/j.ramb.2012.12.002.
  14. Carson S.S. Definitions and epidemiology of the chronically critically ill. Respir Care 2012; 57(6): 848–858, https://doi.org/10.4187/respcare.01736.
  15. Darvall J.N., Boonstra T., Norman J., Murphy D., Bailey M., Iwashyna T.J., Bagshaw S.M., Bellomo R. Persistent critical illness: baseline characteristics, intensive care course, and cause of death. Crit Care Resusc 2019; 21(2): 110–118.
  16. Bagshaw S.M., Stelfox H.T., Iwashyna T.J., Bellomo R., Zuege D., Wang X. Timing of onset of persistent critical illness: a multi-centre retrospective cohort study. Intensive Care Med 2018; 44(12): 2134–2144, https://doi.org/10.1007/s00134-018-5440-1.
  17. Sjoding M.W., Cooke C.R. Chronic critical illness: a growing legacy of successful advances in critical care. Crit Care Med 2015; 43(2): 476–477, https://doi.org/10.1097/ccm.0000000000000780.
  18. Loss S.H., Oliveira R.P., Maccari J.G., Savi A., Boniatti M.M., Hetzel M.P., Dallegrave D.M., Balzano Pde C., Oliveira E.S., Höher J.A., Torelly A.P., Teixeira C. The reality of patients requiring prolonged mechanical ventilation: a multicenter study. Rev Bras Ter Intensiva 2015; 27(1): 26–35, https://doi.org/10.5935/0103-507x.20150006.
  19. Lamas D. Chronic critical illness. N Engl J Med 2014; 370(2): 175–177, https://doi.org/10.1056/nejmms1310675.
  20. Mira J.C., Brakenridge S.C., Moldawer L.L., Moore F.A. Persistent inflammation, immunosuppression and catabolism syndrome. Crit Care Clin 2017; 33(2): 245–258, https://doi.org/10.1016/j.ccc.2016.12.001.
  21. Kandilov A.M., Ingber M., Morley M., Coomer N.M., Dalton K., Gage B., Superina C., Kennell D. Chronically Critically Ill Population Payment Recommendations (CCIP-PR). NC: Research Triangle Institute; 2014.
  22. Marchioni A., Fantini R., Antenora F., Clini E., Fabbri L. Chronic critical illness: the price of survival. Eur J Clin Invest 2015; 45(12): 1341–1349, https://doi.org/10.1111/eci.12547.
  23. Kahn J.M., Le T., Angus D.C., Cox C.E., Hough C.L., White D.B., Yende S., Carson S.S.; ProVent Study Group Investigators. The epidemiology of chronic critical illness in the United States. Crit Care Med 2015; 43(2): 282–287, https://doi.org/10.1097/ccm.0000000000000710.
  24. Goris R.J., te Boekhorst T.P., Nuytinck J.K., Gimbrère J.S. Multiple-organ failure. Generalized autodestructive inflammation? Arch Surg 1985; 120(10): 1109–1115, https://doi.org/10.1001/archsurg.1985.01390340007001.
  25. Chakraborty R.K., Burns B. Systemic inflammatory response syndrome 2021. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2022.
  26. Efron P.A., Mohr A.M., Bihorac A., Horiguchi H., Hollen M.K., Segal M.S., Baker H.V., Leeuwenburgh C., Moldawer L.L., Moore F.A., Brakenridge S.C. Persistent inflammation, immunosuppression, and catabolism and the development of chronic critical illness after surgery. Surgery 2018; 164(2): 178–184, https://doi.org/10.1016/j.surg.2018.04.011.
  27. Dewar D.C., Tarrant S.M., King K.L., Balogh Z.J. Changes in the epidemiology and prediction of multiple-organ failure after injury. J Trauma Acute Care Surg 2013; 74(3): 774–779, https://doi.org/10.1097/ta.0b013e31827a6e69.
  28. Sauaia A., Moore E.E., Johnson J.L., Chin T.L., Banerjee A., Sperry J.L., Maier R.V., Burlew C.C. Temporal trends of postinjury multiple-organ failure: still resource intensive, morbid, and lethal. J Trauma Acute Care Surg 2014; 76(3): 582–593, https://doi.org/10.1097/ta.0000000000000147.
  29. Moore F.A., Sauaia A., Moore E.E., Haenel J.B., Burch J.M., Lezotte D.C. Postinjury multiple organ failure: a bimodal phenomenon. J Trauma 1996; 40(4): 501–510, https://doi.org/10.1097/00005373-199604000-00001.
  30. Ward N.S., Casserly B., Ayala A. The compensatory anti-inflammatory response syndrome (CARS) in critically ill patients. Clin Chest Med 2008; 29(4): 617–625, https://doi.org/10.1016/j.ccm.2008.06.010.
  31. Rosenthal M.D., Kamel A.Y., Rosenthal C.M., Brakenridge S., Croft C.A., Moore F.A. Chronic critical illness: application of what we know. Nutr Clin Pract 2018; 33(1): 39–45, https://doi.org/10.1002/ncp.10024.
  32. Mira J.C., Gentile L.F., Mathias B.J., Efron P.A., Brakenridge S.C., Mohr A.M., Moore F.A., Moldawer L.L. Sepsis pathophysiology, chronic critical illness, and persistent inflammation-immunosuppression and catabolism syndrome. Crit Care Med 2017; 45(2): 253–262, https://doi.org/10.1097/ccm.0000000000002074.
  33. Gabrilovich D.I., Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 2009; 9(3):162–174, https://doi.org/10.1038/nri2506.
  34. Dilek N., Vuillefroy de Silly R., Blancho G., Vanhove B. Myeloid-derived suppressor cells: mechanisms of action and recent advances in their role in transplant tolerance. Front Immunol 2012; 3: 208, https://doi.org/10.3389/fimmu.2012.00208.
  35. Zhou H., Jiang M., Yuan H., Ni W., Tai G. Dual roles of myeloid-derived suppressor cells induced by Toll-like receptor signaling in cancer. Oncol Lett 2021; 21(2): 149, https://doi.org/10.3892/ol.2020.12410.
  36. Chun E., Lavoie S., Michaud M., Gallini C.A., Kim J., Soucy G., Odze R., Glickman J.N., Garrett W.S. CCL2 promotes colorectal carcinogenesis by enhancing polymorphonuclear myeloid-derived suppressor cell population and function. Cell Rep 2015; 12(2): 244–257, https://doi.org/10.1016/j.celrep.2015.06.024.
  37. Janols H., Bergenfelz C., Allaoui R., Larsson A.M., Rydén L., Björnsson S., Janciauskiene S., Wullt M., Bredberg A., Leandersson K. A high frequency of MDSCs in sepsis patients, with the granulocytic subtype dominating in gram-positive cases. J Leukoc Biol 2014; 96(5): 685–693, https://doi.org/10.1189/jlb.5hi0214-074r.
  38. Mathias B., Delmas A.L., Ozrazgat-Baslanti T., Vanzant E.L., Szpila B.E., Mohr A.M., Moore F.A., Brakenridge S.C., Brumback B.A., Moldawer L.L., Efron P.A.; the Sepsis, Critical Illness Research Center Investigators. Human myeloid-derived suppressor cells are associated with chronic immune suppression after severe sepsis/septic shock. Ann Surg 2017; 265(4): 827–834, https://doi.org/10.1097/sla.0000000000001783.
  39. Imoberdorf R., Meier R., Krebs P., Hangartner P.J., Hess B., Stäubli M., Wegmann D., Rühlin M., Ballmer P.E. Prevalence of undernutrition on admission to Swiss hospitals. Clin Nutr 2010; 29: 38–41, https://doi.org/10.1016/j.clnu.2009.06.005.
  40. Pirlich M., Schütz T., Kemps M., Luhman N., Minko N., Lübke H.J., Rossnagel K., Willich S.N., Lochs H. Social risk factors for hospital malnutrition. Nutrition 2005; 21(3): 295–300, https://doi.org/10.1016/j.nut.2004.06.023.
  41. Marinho R., Pessoa A., Lopes M., Rosinhas J., Pinho J., Silveira J., Amado A., Silva S., Oliveira B.M.P.M., Marinho A., Jager-Wittenaar H. High prevalence of malnutrition in Internal Medicine wards — a multicentre ANUMEDI study. J Intern Med 2020; 76: 82–88, https://doi.org/10.1016/j.ejim.2020.02.031.
  42. Groos S., Hunefeld G., Luciano L. Parenteral versus enteral nutrition: morphological changes in human adult intestinal mucosa. J Submicrosc Cytol Pathol 1996; 28(1): 61–74.
  43. Yamamoto S., Allen K., Jones K.R., Cohen S.S., Reyes K., Huhmann M.B. Meeting calorie and protein needs in the critical care unit: a prospective observational pilot study. Nutr Metab Insights 2020; 13: 1178638820905992, https://doi.org/10.1177/1178638820905992.
  44. Meyer J., Yurt R.W., Duhaney R., Hesse D.G., Tracey K.J., Fong Y., Richardson D., Calvano S., Dineen P., Shires G.T. Differential neutrophil activation before and after endotoxin infusion in enterally versus parenterally fed volunteers. Surg Gynecol Obstet 1988; 167(6): 501–509.
  45. Jung C.Y., Bae J.M. Pathophysiology and protective approaches of gut injury in critical illness. Yeungnam Univ J Med 2021; 38(1): 27–33, https://doi.org/10.12701/yujm.2020.00703.
  46. Singer P., Blaser A.R., Berger M.M., Alhazzani W., Calder P.C., Casaer M.P., Hiesmayr M., Mayer K., Montejo J.C., Pichard C., Preiser J.C., van Zanten A.R.H., Oczkowski S., Szczeklik W., Bischoff S.C. ESPEN guideline on clinical nutrition in the intensive care unit. Clin Nutr 2019; 38(1): 48–79, https://doi.org/10.1016/j.clnu.2018.08.037.
  47. Chapman M., Peake S.L., Bellomo R., Davies A., Deane A., Horowitz M., Hurford S., Lange K., Little L., Mackle D., O’Connor S., Presneill J., Ridley E., Williams P., Young P.; TARGET Investigators, for the ANZICS Clinical Trials Group. Energy-dense versus routine enteral nutrition in the critically ill. N Eng J Med 2018; 379(19): 1823–1834, https://doi.org/10.1056/nejmoa1811687.
  48. Yamamoto S., Allen K., Jones K.R., Cohen S.S., Reyes K., Huhmann M.B. Meeting calorie and protein needs in the critical care unit: a prospective observational pilot study. Nutr Metab Insights 2020; 13: 1178638820905992, https://doi.org/10.1177/1178638820905992.
  49. McClave S.A., Taylor B.E., Martindale R.G., Warren M.M., Johnson D.R., Braunschweig C., McCarthy M.S., Davanos E., Rice T.W., Cresci G.A., Gervasio J.M., Sacks G.S., Roberts P.R., Compher C.; Society of Critical Care Medicine; American Society of Parenteral and Enteral Nutrition. Guidelines for the provision and assessment of nutrition support therapy in the adult critically ill patient: Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (A.S.P.E.N.). JPEN J Parenter Enteral Nutr 2016; 40(2): 159–211, https://doi.org/10.1177/0148607115621863.
  50. Gungabissoon U., Hacquoil K., Bains C., Irizarry M., Dukes G., Williamson R., Deane A.M., Heyland D.K. Prevalence, risk factors, clinical consequences, and treatment of enteral feed intolerance during critical illness. JPEN J Parenter Enteral Nutr 2015; 39(4): 441–448, https://doi.org/10.1177/0148607114526450.
  51. Blaser A.R., Starkopf J., Kirsimägi Ü., Deane A.M. Definition, prevalence, and outcome of feeding intolerance in intensive care: a systematic review and meta-analysis. Acta Anaesthesiol Scand 2014; 58(8): 914–922, https://doi.org/10.1111/aas.12302.
  52. Atasever A.G., Ozcan P.E., Kasali K., Abdullah T., Orhun G., Senturk E. The frequency, risk factors, and complications of gastrointestinal dysfunction during enteral nutrition in critically ill patients. Ther Clin Risk Manag 2018; 14: 385–391, https://doi.org/10.2147/tcrm.s158492.
  53. Merchan C., Altshuler D., Aberle C., Papadopoulos J., Schwartz D. Tolerability of enteral nutrition in mechanically ventilated patients with septic shock who require vasopressors. J Intensive Care Med 2017; 32(9): 540–546, https://doi.org/10.1177/0885066616656799.
  54. Faramarzi E., Mahmoodpoor A., Hamishehkar H., Shadvar K., Iranpour A., Sabzevari T., Sanaie S. Effect of gastric residual volume monitoring on incidence of ventilator-associated pneumonia in mechanically ventilated patients admitted to intensive care unit. Pak J Med Sci 2020; 36(2): 48–53, https://doi.org/10.12669/pjms.36.2.1321.
  55. Avgerinos K.I., Egan J.M., Mattson M.P., Kapogiannis D. Medium chain triglycerides induce mild ketosis and may improve cognition in Alzheimer’s disease. A systematic review and meta-analysis of human studies. Ageing Res Rev 2020; 58: 101001, https://doi.org/10.1016/j.arr.2019.101001.
  56. Mentec H., Dupont H., Bocchetti M., Cani P., Ponche F., Bleichner G. Upper digestive intolerance during enteral nutrition in critically ill patients: frequency, risk factors, and complications. Crit Care Med 2001; 29(10): 1955–1961, https://doi.org/10.1097/00003246-200110000-00018.
  57. Rzheutskaya R.E. Characteristics of hemodynamic disorders in patients with severe traumatic brain injury. Crit Care Res Pract 2012; 2012: 606179, https://doi.org/10.1155/2012/606179.
  58. Thome J.J., Yudanin N., Ohmura Y., Kubota M., Grinshpun B., Sathaliyawala T., Kato T., Lerner H., Shen Y., Farber D.L. Spatial map of human T cell compartmentalization and maintenance over decades of life. Cell 2014; 159(4): 814–828, https://doi.org/10.1016/j.cell.2014.10.026.
  59. Clevers H.C., Bevins C.L. Paneth cells: maestros of the small intestinal crypts. Annu Rev Physiol 2013; 75: 289–311, https://doi.org/10.1146/annurev-physiol-030212-183744.
  60. Meng M., Klingensmith N.J., Coopersmith C.M. New insights into the gut as the driver of critical illness and organ failure. Curr Opin Crit Care 2017; 23(2): 143–148, https://doi.org/10.1097/mcc.0000000000000386.
  61. Nagpal R., Yadav H. Bacterial translocation from the gut to the distant organs: an overview. Ann Nutr Metab 2017; 71(Suppl 1): 11–16, https://doi.org/10.1159/000479918.
  62. Deitch E.A. Gut-origin sepsis: evolution of a concept. Surgeon 2012; 10(6): 350–356, https://doi.org/10.1016/j.surge.2012.03.003.
  63. Senthil M., Brown M., Xu D.Z., Lu Q., Feketeova E., Deitch E.A. Gut-lymph hypothesis of systemic inflammatory response syndrome/multiple-organ dysfunction syndrome: validating studies in a porcine model. J Trauma 2006; 60(5): 958–967, https://doi.org/10.1097/01.ta.0000215500.00018.47.
  64. Reino D.C., Pisarenko V., Palange D., Doucet D., Bonitz R.P., Lu Q., Colorado I., Sheth S.U., Chandler B., Kannan K.B., Ramanathan M., Xu D.Z., Deitch E.A., Feinman R. Trauma hemorrhagic shock-induced lung injury involves a gut-lymph-induced TLR4 pathway in mice. PLoS One 2011; 6(8): e14829, https://doi.org/10.1371/journal.pone.0014829.
  65. Reino D.C., Palange D., Feketeova E., Bonitz R.P., Xu D.Z., Lu Q., Sheth S.U., Peña G., Ulloa L., De Maio A., Feinman R., Deitch E.A. Activation of toll-like receptor 4 is necessary for trauma hemorrhagic shock-induced gut injury and polymorphonuclear neutrophil priming. Shock 2012; 38(1): 107–114, https://doi.org/10.1097/shk.0b013e318257123a.
  66. Xie Y., Newberry E.P., Young S.G., Robine S., Hamilton R.L., Wong J.S., Luo J., Kennedy S., Davidson N.O Compensatory increase in hepatic lipogenesis in mice with conditional intestine-specific Mttp deficiency. J Biol Chem 2006; 281(7): 4075–4086, https://doi.org/10.1074/jbc.m510622200.
  67. Chang M., Alsaigh T., Kistler E.B., Schmid-Schönbein G.W. Breakdown of mucin as barrier to digestive enzymes in the ischemic rat small intestine. PLoS One 2012; 7(6): e40087, https://doi.org/10.1371/journal.pone.0040087.
  68. DeLano F.A., Hoyt D.B., Schmid-Schönbein G.W. Pancreatic digestive enzyme blockade in the intestine increases survival after experimental shock. Sci Transl Med 2013; 5(169): 169ra11, https://doi.org/10.1126/scitranslmed.3005046.
  69. Schmid-Schönbein G.W., DeLano F.A., Penn A.H., Kistler E. An elementary analysis of physiologic shock and multi-organ failure: the autodigestion hypothesis. Annu Int Conf IEEE Eng Med Biol Soc 2012; 2012: 3114–3115, https://doi.org/10.1109/embc.2012.6346623.
  70. Sender R., Fuchs S., Milo R. Are we really vastly outnumbered? Revisiting the ratio of bacterial to host cells in humans. Cell 2016; 164(3): 337–340, https://doi.org/10.1016/j.cell.2016.01.013.
  71. Liu S., Zhao W., Lan P., Mou X. The microbiome in inflammatory bowel diseases: from pathogenesis to therapy. Protein Cell 2021; 12(5): 331–345, https://doi.org/10.1007/s13238-020-00745-3.
  72. Oami T., Chihade D.B., Coopersmith C.M. The microbiome and nutrition in critical illness. Curr Opin Crit Care 2019; 25(2): 145–149, https://doi.org/10.1097/mcc.0000000000000582.
  73. Nakov R., Segal J.P., Settanni C.R., Bibbò S., Gasbarrini A., Cammarota G., Ianiro G. Microbiome: what intensivists should know. Minerva Anestesiol 2020; 86(7): 777–785, https://doi.org/10.23736/s0375-9393.20.14278-0.
  74. Dickson R.P. The microbiome and critical illness. Lancet Respir Med 2016; 4(1): 59–72, https://doi.org/10.1016/s2213-2600(15)00427-0.
  75. Otani S., Chihade D.B., Coopersmith C.M. Critical illness and the role of the microbiome. Acute Med Surg 2018; 6(2): 91–94, https://doi.org/10.1002/ams2.383.
  76. Haak B.W., Wiersinga W.J. The role of the gut microbiota in sepsis. Lancet Gastroenterol Hepatol 2017; 2(2): 135–143, https://doi.org/10.1016/s2468-1253(16)30119-4.
  77. Panigrahi P., Parida S., Nanda N.C., Satpathy R., Pradhan L., Chandel D.S., Baccaglini L., Mohapatra A., Mohapatra S.S., Misra P.R., Chaudhry R., Chen H.H., Johnson J.A., Morris J.G., Paneth N., Gewolb I.H. A randomized synbiotic trial to prevent sepsis among infants in rural India. Nature 2017; 548(7668): 407–412, https://doi.org/10.1038/nature23480.
  78. Barko P.C., McMichael M.A., Swanson K.S., Williams D.A. The gastrointestinal microbiome: a review. Vet Intern Med 2018; 32(1): 9–25, https://doi.org/10.1111/jvim.14875.
  79. Weiss G.A., Hennet T. Mechanisms and consequences of intestinal dysbiosis. Cell Mol Life Sci 2017; 74(16): 2959–2977, https://doi.org/10.1007/s00018-017-2509-x.
  80. Nicholson J.K., Holmes E., Kinross J., Burcelin R., Gibson G., Jia W., Pettersson S. Host-gut microbiota metabolic interactions. Science 2012; 336(6086): 1262–1267, https://doi.org/10.1126/science.1223813.
  81. Vincent J.L., Rello J., Marshall J., Silva E., Anzueto A., Martin C.D., Moreno R., Lipman J., Gomersall C., Sakr Y., Reinhart K.; EPIC II Group of Investigators. International study of the prevalence and outcomes of infection in intensive care units. JAMA 2009; 302(21): 2323–2329, https://doi.org/10.1001/jama.2009.1754.
  82. Iizumi T., Battaglia T., Ruiz V., Perez Perez G.I. Gut microbiome and antibiotics. Arch Med Res 2017; 48(8): 727–734, https://doi.org/10.1016/j.arcmed.2017.11.004.
  83. Haak B.W., Levi M., Wiersinga W.J. Microbiota-targeted therapies on the intensive care unit. Curr Opin Crit Care 2017; 23(2): 167–174, https://doi.org/10.1097/mcc.0000000000000389.
  84. Morowitz M.J., Carlisle E.M., Alverdy J.C. Contributions of intestinal bacteria to nutrition and metabolism in the critically ill. Surg Clin North Am 2011; 91(4): 771–785, https://doi.org/10.1016/j.suc.2011.05.001.
  85. Kitsios G.D., Morowitz M.J., Dickson R.P., Huffnagle G.B., McVerry B.J., Morris A. Dysbiosis in the ICU: microbiome science coming to the bedside. J Crit Care 2017; 38: 84–91, https://doi.org/10.1016/j.jcrc.2016.09.029.
  86. Kasatpibal N., Whitney J.D., Saokaew S., Kengkla K., Heitkemper M.M., Apisarnthanarak A. Effectiveness of probiotic, prebiotic, and synbiotic therapies in reducing postoperative complications: a systematic review and network meta-analysis. Clin Infect Dis 2017; 64(Suppl 2): 153–160, https://doi.org/10.1093/cid/cix114.
  87. Lankelma J.M., van Vught L.A., Belzer C., Schultz M.J., van der Poll T., de Vos W.M., Wiersinga W.J. Critically ill patients demonstrate large interpersonal variation in intestinal microbiota dysregulation: a pilot study. Intensive Care Med 2017; 43(1): 59–68, https://doi.org/10.1007/s00134-016-4613-z.
  88. Moron R., Galvez J., Colmenero M., Anderson P., Cabeza J., Rodriguez-Cabezas M.E. The importance of the microbiome in critically ill patients: role of nutrition. Nutrients 2019; 11(12): 3002, https://doi.org/10.3390/nu11123002.
  89. Zaborin A., Smith D., Garfield K., Quensen J., Shakhsheer B., Kade M., Tirrell M., Tiedje J., Gilbert J.A., Zaborina O., Alverdy J.C. Membership and behavior of ultra-low-diversity pathogen communities present in the gut of humans during prolonged critical illness. mBio 2014; 5(5): e1361–e1314, https://doi.org/10.1128/mbio.01361-14.
  90. Ojima M., Motooka D., Shimizu K., Gotoh K., Shintani A., Yoshiya K., Nakamura S., Ogura H., Iida T., Shimazu T. Metagenomic analysis reveals dynamic changes of whole gut microbiota in the acute phase of intensive care unit patients. Dig Dis Sci 2016; 61: 1628–1634, https://doi.org/10.1007/s10620-015-4011-3.
  91. Pamer E.G. Resurrecting the intestinal microbiota to combat antibiotic-resistant pathogens. Science 2016; 352(6285): 535–538, https://doi.org/10.1126/science.aad9382.
  92. Hojo M., Asahara T., Nagahara A., Takeda T., Matsumoto K., Ueyama H., Matsumoto K., Asaoka D., Takahashi T., Nomoto K., Yamashiro Y., Watanabe S. Gut microbiota composition before and after use of proton pump inhibitors. Dig Dis Sci 2018; 63(11): 2940–2949, https://doi.org/10.1007/s10620-018-5122-4.
  93. Schuijt T.J., Lankelma J.M., Scicluna B.P., de Sousa e Melo F., Roelofs J.J., de Boer J.D., Hoogendijk A.J., de Beer R., de Vos A., Belzer C., de Vos W.M., van der Poll T., Wiersinga W.J. The gut microbiota plays a protective role in the host defence against pneumococcal pneumonia. Gut 2016; 65(4): 575–583, https://doi.org/10.1136/gutjnl-2015-309728.
  94. Schuijt T.J., van der Poll T., de Vos W.M., Wiersinga W.J. The intestinal microbiota and host immune interactions in the critically ill. Trends Microbiol 2013; 21(5): 221–29, https://doi.org/10.1016/j.tim.2013.02.001.
  95. Budden K.F., Gellatly S.L., Wood D.L., Cooper M.A., Morrison M. Emerging pathogenic links between microbiota and the gut-lung axis. Nat Rev Microbiol 2017; 15(1): 55–63, https://doi.org/10.1038/nrmicro.2016.142.
  96. Gray J., Oehrle K., Worthen G., Alenghat T., Whitsett J., Deshmukh H. Intestinal commensal bacteria mediate lung mucosal immunity and promote resistance of newborn mice to infection. Sci Transl Med 2017; 9(376): aaf9412, https://doi.org/10.1126/scitranslmed.aaf9412.
  97. Siwicka-Gieroba D., Czarko-Wicha K. Lung microbiome — a modern knowledge. Cent Eur J Immunol 2020; 45(3): 342–345, https://doi.org/10.5114/ceji.2020.101266.
  98. Lankelma J.M., Birnie E., Weehuizen T.A.F., Scicluna B.P., Belzer C., Houtkooper R.H., Roelofs J.J.T.H., de Vos A.F., van der Poll T., Budding A.E., Wiersinga W.J. The gut microbiota as a modulator of innate immunity during melioidosis. PLoS Negl Trop Dis 2017; 11(4): e0005548, https://doi.org/10.1371/journal.pntd.0005548.
  99. Clarke G., Stilling R.M., Kennedy P.J., Stanton C., Cryan J.F., Dinan T.G. Minireview: gut microbiota: the neglected endocrine organ. Mol Endocrinol 2014; 28(8): 1221–1238, https://doi.org/10.1210/me.2014-1108.
  100. Wall R., Cryan J.F., Ross R.P., Fitzgerald G.F., Dinan T.G., Stanton C. Bacterial neuroactive compounds produced by psychobiotics. In: Microbial endocrinology: the microbiota-gut-brain axis in health and disease. Lyte M., Cryan J.F. (editors). New York: Springer; 2014; p. 221–239, https://doi.org/10.1007/978-1-4939-0897-4_10.
  101. Barrett E., Ross R.P., O’Toole P.W., Fitzgerald G.F., Stanton C. γ-Aminobutyric acid production by culturable bacteria from the human intestine. J Appl Microbiol 2012; 113(2): 411–417, https://doi.org/10.1111/j.1365-2672.2012.05344.x.
  102. Lyte M. Microbial endocrinology in the microbiome-gut-brain axis: how bacterial production and utilization of neurochemicals influence behavior. PLoS Pathog 2013; 9(11): e1003726, https://doi.org/10.1371/journal.ppat.1003726.
  103. O’Mahony S.M., Clarke G., Borre Y.E., Dinan T.G., Cryan J.F. Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behav Brain Res 2015; 277: 32–48, https://doi.org/10.1016/j.bbr.2014.07.027.
  104. Bajaj J.S. The role of microbiota in hepatic encephalopathy. Gut Microbes 2014; 5(3): 397–403, https://doi.org/10.4161/gmic.28684.
  105. Jacobs M.C., Haak B.W., Hugenholtz F., Wiersinga W.J. Gut microbiota and host defense in critical illness. Curr Opin Crit Care 2017; 23(4): 257–263, https://doi.org/10.1097/mcc.0000000000000424.
  106. Needham D.M., Davidson J., Cohen H., Hopkins R.O., Weinert C., Wunsch H., Zawistowski C., Bemis-Dougherty A., Berney S.C., Bienvenu O.J., Brady S.L., Brodsky M.B., Denehy L., Elliott D., Flatley C., Harabin A.L., Jones C., Louis D., Meltzer W., Muldoon S.R., Palmer J.B., Perme C., Robinson M., Schmidt D.M., Scruth E., Spill G.R., Storey C.P., Render M., Votto J., Harvey M.A. Improving long-term outcomes after discharge from intensive care unit: report from a stakeholders’ conference. Crit Care Med 2012; 40(2): 502–509, https://doi.org/10.1097/ccm.0b013e318232da75.
  107. Rengel K.F., Hayhurst C.J., Pandharipande P.P., Hughes C.G. Long-term cognitive and functional impairments after critical illness. Anesth Analg 2019; 128(4): 772–780, https://doi.org/10.1213/ane.0000000000004066.
  108. Latronico N., Bolton C.F. Critical illness polyneuropathy and myopathy: a major cause of muscle weakness and paralysis. Lancet Neurol 2011; 10(10): 931–941, https://doi.org/10.1016/s1474-4422(11)70178-8.
  109. Macht M., Wimbish T., Clark B.J., Benson A.B., Burnham E.L., Williams A., Moss M. Post-extubation dysphagia is persistent and associated with poor outcomes in survivors of critical illness. Crit Care 2011; 15(5): R231, https://doi.org/10.1186/cc10472.
  110. Abunnaja S., Cuviello A., Sanchez J.A. Enteral and parenteral nutrition in the perioperative period: state of the art. Nutrients 2013; 5(2): 608–623, https://doi.org/10.3390/nu5020608.
  111. Reid C.L., Campbell I.T., Little R.A. Muscle wasting and energy balance in critical illness. Clin Nutr 2004; 23(2): 273–280, https://doi.org/10.1016/s0261-5614(03)00129-8.
  112. Opal S.M. Immunologic alterations and the pathogenesis of organ failure in the ICU. Semin Respir Crit Care Med 2011; 32(5): 569–580, https://doi.org/10.1055/s-0031-1287865.
  113. Kemp H.I., Laycock H., Costello A., Brett S.J. Chronic pain in critical care survivors: a narrative review. Br J Anaesth 2019; 123(2): e372–e384, https://doi.org/10.1016/j.bja.2019.03.025.
  114. Griffiths J., Gager M., Alder N., Fawcett D., Waldmann C., Quinlan J. A self-report-based study of the incidence and associations of sexual dysfunction in survivors of intensive care treatment. Intensive Care Med 2006; 32(3): 445–451, https://doi.org/10.1007/s00134-005-0048-7.
  115. Ulvik A., Kvåle R., Wentzel-Larsen T., Flaatten H. Sexual function in ICU survivors more than 3 years after major trauma. Intensive Care Med 2008; 34(3): 447–453, https://doi.org/10.1007/s00134-007-0936-0.
  116. Myhren H., Ekeberg O., Tøien K., Karlsson S., Stokland O. Posttraumatic stress, anxiety and depression symptoms in patients during the first year post intensive care unit discharge. Crit Care 2010; 14(1): R14, https://doi.org/10.1186/cc8870.
  117. Winters B.D., Eberlein M., Leung J., Needham D.M., Pronovost P.J., Sevransky J.E. Long-term mortality and quality of life in sepsis: a systematic review. Crit Care Med 2010; 38(5): 1276–1283, https://doi.org/10.1097/ccm.0b013e3181d8cc1d.
  118. Torgersen J., Hole J.F., Kvåle R., Wentzel-Larsen T., Flaatten H. Cognitive impairments after critical illness. Acta Anaesthesiol Scand 2011; 55(9): 1044–1051, https://doi.org/10.1111/j.1399-6576.2011.02500.x.
  119. Gunderson C.C., Walter A.C., Ruskin R., Ding K., Moore K.N. Post-intensive care unit syndrome in gynecologic oncology patients. Support Care Cancer 2016; 24(11): 4627–4632, https://doi.org/10.1007/s00520-016-3305-0.
  120. Manning J.C., Pinto N.P., Rennick J.E., Colville G., Curley M.A.Q. Conceptualizing post intensive care syndrome in children — the PICS-p framework. Pediatr Crit Care Med 2018; 19(4): 298–300, https://doi.org/10.1097/pcc.0000000000001476.
  121. Wang S., Allen D., Kheir Y.N., Campbell N., Khan B. Aging and post-intensive care syndrome: a critical need for geriatric psychiatry. Am J Geriatr Psychiatry 2018; 26(2): 212–221, https://doi.org/10.1016/j.jagp.2017.05.016.
  122. Federation of Anesthesiologists-Resuscitators of Russian. Association of Neuroanesthesiologists and Neuroresuscitators. Union of Rehabilitologists of Russia. Reabilitatsiya v intensivnoy terapii (ReabIT). Klinicheskie rekomendatsii[Rehabilitation in intensive care (ReabIT). Clinical guidelines]. 2015.
  123. Belkin A.A., Davyidova N.S., Leyderman I.N., Borovskikh S.V., Khalin A.V. Bed-rest in intensive care and resuscitation. Meditsina-Ural 2014; 8: 15–21.
  124. Belkin A.A. Syndrome effects of intensive therapy — post intensive care syndrome (PICS). Vestnik intensivnoj terapii im. A.I. Saltanova 2018; 2: 12–23, https://doi.org/10.21320/1818-474x-2018-2-12-23.
  125. Xing C., Arai K., Lo E.H., Hommel M. Pathophysiologic cascades in ischemic stroke. Int J Stroke 2012; 7(5): 378–385, https://doi.org/10.1111/j.1747-4949.2012.00839.x.
  126. Sharma R., Shultz S.R., Robinson M.J., Belli A., Hibbs M.L., O’Brien T.J., Semple B.D. Infections after a traumatic brain injury: the complex interplay between the immune and neurological systems. Brain Behav Immun 2019; 79: 63–74, https://doi.org/10.1016/j.bbi.2019.04.034.
  127. Marehbian J., Muehlschlegel S., Edlow B.L., Hinson H.E., Hwang D.Y. Medical management of the severe traumatic brain injury patient. Neurocrit Care 2017; 27(3): 430–446, https://doi.org/10.1007/s12028-017-0408-5.
  128. Harvey M.A., Davidson J.E. Postintensive care syndrome: right care, right now… and later. Crit Care Med 2016; 44(2): 381–385, https://doi.org/10.1097/ccm.0000000000001531.
  129. Inoue S., Hatakeyama J., Kondo Y., Hifumi T., Sakuramoto H., Kawasaki T., Taito S., Nakamura K., Unoki T., Kawai Y., Kenmotsu Y., Saito M., Yamakawa K., Nishida O. Post-intensive care syndrome: its pathophysiology, prevention, and future directions. Acute Med Surg 2019; 6(3): 233–246, https://doi.org/10.1002/ams2.415.
  130. Ely E.W. The ABCDEF bundle: science and philosophy of how ICU liberation serves patients and families. Crit Care Med; 45(2): 321–330, https://doi.org/10.1097/ccm.0000000000002175.
  131. Likhterman L.B. Principles of modern periodization of the course of traumatic brain injury. Voprosy nejrohirurgii im. N.N. Burdenko 1990; 54(6): 13–16.
  132. Parfenov A.L., Petrova M.V., Pichugina I.M., Luginina E.V. Comorbidity development in patients with severe brain injury resulting in chronic critical condition (review). Obsaa reanimatologia 2020; 16(4): 72–89, https://doi.org/10.15360/1813-9779-2020-4-72-89.
  133. Iwashyna T.J., Hodgson C.L., Pilcher D., Orford N., Santamaria J.D., Bailey M., Bellomo R. Towards defining persistent critical illness and other varieties of chronic critical illness. Crit Care Resusc 2015; 17(3): 215–218.
  134. Iwashyna T.J., Hodgson C.L., Pilcher D., Bailey M., Bellomo R. Persistent critical illness characterised by Australian and New Zealand ICU clinicians. Crit Care Resusc 2015; 17(3): 153–158.
  135. Chiung-Jui Su D., Yuan K.S., Weng S.F., Hong R.B., Wu M.P., Wu H.M., Chou W. Can early rehabilitation after total hip arthroplasty reduce its major complications and medical expenses? Report from a nationally representative cohort. Biomed Res Int 2015; 2015: 641958, https://doi.org/10.1155/2015/641958.
  136. Bugbee W.D., Pulido P.A., Goldberg T., D’Lima D.D. Use of an anti-gravity treadmill for early postoperative rehabilitation after total knee replacement: a pilot study to determine safety and feasibility. Am J Orthop (Belle Mead NJ) 2016; 45(4): E167–E173.
  137. Michot A., Stoeckle E., Bannel J.D., Colombani S., Sargos P., Brouste V., Italiano A., Kind M. The introduction of early patient rehabilitation in surgery of soft tissue sarcoma and its impact on post-operative outcome. Eur J Surg Oncol 2015; 41(12): 1678–1684, https://doi.org/10.1016/j.ejso.2015.08.173.
Parfenov A.L., Razzhivin V.P., Petrova M.V. Chronic Critical Illness: Current Aspects of the Problem (Review) . Sovremennye tehnologii v medicine 2022; 14(3): 70, https://doi.org/10.17691/stm2022.14.3.08


Journal in Databases

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg

SCImago Journal & Country Rank