Today: Dec 27, 2024
RU / EN
Last update: Oct 30, 2024
Genome Features of Probiotic Bifidobacteria Determining Their Strain-Specific Properties

Genome Features of Probiotic Bifidobacteria Determining Their Strain-Specific Properties

Tochilina A.G., Belova I.V., Ilyicheva T.N., Marchenko V.Yu., Zhirnov V.A., Molodtsova S.B., Ikonnikov A.V., Muhkina I.V., Blagonravova A.S., Soloveva I.V.
Key words: Bifidobacterium; probiotics; antiviral activity; whole genome sequencing; influenza A virus.
2022, volume 14, issue 5, page 36.

Full text

html pdf
1000
1336

The aim of the study was to analyze the genome features of the probiotic strains Bifidobacterium longum 379, Bifidobacterium bifidum 1, and Bifidobacterium bifidum 791 and study their antiviral activity.

Materials and Methods. Whole genome sequencing of three strains of bifidobacteria was performed on the MiSeq platform (Illumina Inc., USA). The genomes were annotated using the Prokka v. 1.11 utility and RAST genomic server. The individual genetic determinants were searched using the ResFinder 3.2, PathogenFinder, PlasmidFinder, RAST, and Bagel 4 software. The antiviral activity of the strains against influenza A viruses was studied using MDCK cells (Madin–Darby canine kidney cells), the epidemic strain of influenza A/Lipetsk/1V/2018 (H1N1 pdm09) (EPI_ISL_332798), the highly pathogenic avian influenza virus A/common gull/Saratov/1676/2018 (H5N6) strain (EPI_ISL_336925), and neutral red vital dye.

Results. The genomes of all studied strains contained determinants responsible for utilization of carbohydrates of plant origin; the genes of key enzymes for the synthesis of tryptophan and folic acid are present in the genomes of B. longum 379 and B. bifidum 791. A feature of the B. bifidum 791 genome is the presence of determinants responsible for the synthesis of thermostable type I bacteriocins — flavucin and lasso peptide. The B. bifidum 791 strain was found to show pronounced antiviral activity against both the strains of influenza A, the supernatant of which suppressed viral replication in vitro up to a dilution of 1:8, and the cells inhibited viral reproduction up to a concentration of 6·106 CFU/ml.

Conclusion. The analysis of complete genomes of B. longum 379, B. bifidum 1, and B. bifidum 791 showed features that determine their strain-specific properties, the findings on which were previously made empirically based on indirect signs. In the genomes of B. longum 379 and B. bifidum 791 strains, in contrast to B. bifidum 1 strain, key enzymes for the synthesis of tryptophan and folic acid were found. These substances have an impact on the human body in many ways, including having a thymoleptic effect (reducing emotional stress, irritability, anxiety, eliminating lethargy, apathy, melancholy, anxiety) and regulating cognitive activity. The presence of determinants responsible for the synthesis of thermostable type I bacteriocins in the genome of B. bifidum 791 strain determines its pronounced antiviral activity.

  1. Probiotics. Advanced food and health application. Brandelli A. (editor). Academic Press; 2021; 530 p.
  2. Kornienko E.A. Metabolic activities of microbiota and metabiotics. Russkij medicinskij zurnal 2016; 18: 1196–1201.
  3. Oleskin A.V., Shenderov B.A. Neuromodulatory effects, targets of the SCFAs and gasotransmitters produced by the human symbiotic microbiota. Microb Ecol Health Dis 2016; 27: 30971, https://doi.org/10.3402/mehd.v27.30971.
  4. Oleskin A.V., Shenderov B.A. Probiotics and psychobiotics: the role of microbial neurochemicals. Probiotics Antimicrob Proteins 2019; 11(4): 1071–1085, https://doi.org/10.1007/s12602-019-09583-0.
  5. Arena M.P., Elmastour F., Sane F., Drider D., Fiocco D., Spano G., Hober D. Inhibition of coxsackievirus B4 by Lactobacillus plantarum. Microbiol Res 2018; 210: 59–64, https://doi.org/10.1016/j.micres.2018.03.008.
  6. Kim K., Lee G., Thanh H.D., Kim J.H., Konkit M., Yoon S., Park M., Yang S., Park E., Kim W. Exopolysaccharide from Lactobacillus plantarum LRCC5310 offers protection against rotavirus-induced diarrhea and regulates inflammatory response. J Dairy Sci 2018; 101(7): 5702–5712, https://doi.org/10.3168/jds.2017-14151.
  7. Lei S., Ramesh A., Twitchell E., Wen K., Bui T., Weiss M., Yang X., Kocher J., Li G., Giri-Rachman E., Trang N.V., Jiang X., Ryan E.P., Yuan L. High protective efficacy of probiotics and rice bran against human norovirus infection and diarrhea in gnotobiotic pigs. Front Microbiol 2016; 7: 1699, https://doi.org/10.3389/fmicb.2016.01699.
  8. Majamaa H., Isolauri E., Saxelin M., Vesikari T. Lactic acid bacteria in the treatment of acute rotavirus gastroenteritis. J Pediatr Gastroenterol Nutr 1995; 20(3): 333–338, https://doi.org/10.1097/00005176-199504000-00012.
  9. Soloveva I.V., Ilyicheva T.N., Marchenko V.Y., Pyankov O.V., Tochilina A.G., Belova I.V., Zhirnov V.A., Bormotov N.I., Skarnovich M.O., Durymanov A.G., Molodtsova S.B., Filippova E.I., Ovchinnikova A.S., Magerramova A.V., Ryzhikov A.B., Maksyutov R.A. Genome features and in vitro activity against influenza A and SARS-CoV-2 viruses of six probiotic strains. Biomed Res Int 2021; 2021: 6662027, https://doi.org/10.1155/2021/6662027.
  10. Chebotar’ I.V., Polikarpova S.V., Bocharova Yu.A., Mayansky N.A. Use of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) for identification of bacteria and fungi of the pathogenicity group III and IV. Laboratornaa sluzba 2018; 7(2): 78–86, https://doi.org/10.17116/labs20187278-86.
  11. Soloveva I.V., Novikova N.A., Tochilina A.G., Belova I.V., Kashnikov A.Y., Sashina T.A., Zhirnov V.A., Molodtsova S.B. The probiotic strain Lactobacillus fermentum 39: biochemical properties, genomic features, and antiviral activity. Mikrobiologiia 2021; 90(2): 215–222.
  12. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30(14): 2068–2069, https://doi.org/10.1093/bioinformatics/btu153.
  13. Zankari E., Hasman H., Cosentino S., Vestergaard M., Rasmussen S., Lund O., Aarestrup F.M., Larsen M.V. Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother 2012; 67(11): 2640–2644, https://doi.org/10.1093/jac/dks261.
  14. Cosentino S., Voldby L.M., Moller A.F., Lund O. PathogenFinder — distinguishing friend from foe using bacterial whole genome sequence data. PLoS One 2013; 8(10): e77302, https://doi.org/10.1371/journal.pone.0077302.
  15. Carattoli A., Zankari E., García-Fernández A., Voldby Larsen M., Lund O., Villa L., Møller Aarestrup F., Hasman H. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob Agents Chemother 2014; 58(7): 3895–3903, https://doi.org/10.1128/aac.02412-14.
  16. van Heel A.J., Kloosterman T.G., Montalban-Lopez M., Deng J., Plat A., Baudu B., Hendriks D., Moll G.N., Kuipers O.P. Discovery, production and modification of 5 novel lantibiotics using the promiscuous nisin modification machinery. ACS Synth Biol 2016; 5(10): 1146–1154, https://doi.org/10.1021/acssynbio.6b00033.
  17. Rossi M., Amaretti A., Raimondi S. Folate production by probiotic bacteria. Nutrients 2011; 3(1): 118–134, https://doi.org/10.3390/nu3010118.
  18. Gabris C., Bengelsdorf F.R., Dürre P. Analysis of the key enzymes of butyric and acetic acid fermentation in biogas reactors. Microb Biotechnol 2015; 8(5): 865–873, https://doi.org/10.1111/1751-7915.12299.
  19. Prasirtsak B., Thitiprasert S., Tolieng V., Assabumrungrat S., Tanasupawat S., Thongchul N. D-lactic acid fermentation performance and the enzyme activity of a novel bacterium Terrilactibacillus laevilacticus SK5–6. Ann Microbiol 2019; 69: 1537–1546.
  20. Kang D.W., Ilhan Z.E., Isern N.G., Hoyt D.W., Howsmon D.P., Shaffer M., Lozupone C.A., Hahn J., Adams J.B., Krajmalnik-Brown R. Differences in fecal microbial metabolites and microbiota of children with autism spectrum disorders. Anaerobe 2018; 49: 121–131, https://doi.org/10.1016/j.anaerobe.2017.12.007.
  21. Vlasenko V.A., Ilyicheva T.N., Teplyakova T.V., Svyatchenko S.V., Asbaganov S.V., Zmitrovich I.V., Vlasenko A.V. Antiviral activity of total polysaccharide fraction of water and ethanol extracts of Pleurotus pulmonarius against the influenza A virus. Curr Res Environ Appl Mycol 2020; 10(1): 224–235, https://doi.org/10.5943/cream/10/1/22.
  22. Morita N., Umemoto E., Fujita S., Hayashi A., Kikuta J., Kimura I., Haneda T., Imai T., Inoue A., Mimuro H., Maeda Y., Kayama H., Okumura R., Aoki J., Okada N., Kida T., Ishii M., Nabeshima R., Takeda K. GPR31-dependent dendrite protrusion of intestinal CX3CR1+ cells by bacterial metabolites. Nature 2019; 566(7742): 110–114, https://doi.org/10.1038/s41586-019-0884-1.
  23. Ermolenko E.I., Suvorov A.N., Furaeva V.A. Protivovirusnyy effekt in vitro metabolitov, vydelyaemykh kul’turami enterokokka i laktobatsill. V kn.: Materialy YI Rossiyskogo s”ezda vrachey infektsionistov [Antiviral effect in vitro of metabolites secreted by cultures of enterococcus and lactobacilli. In: Proceedings of the VI Russian congress of infectious disease physicians]. Moscow; 2003; p. 371.
  24. El Kfoury K.A., Romond M.B., Scuotto A., Alidjinou E.K., Dabboussi F., Hamze M., Engelmann L., Sane F., Hober D. Bifidobacteria-derived lipoproteins inhibit infection with coxsackievirus B4 in vitro. Int J Antimicrob Agents 2017; 50(2): 177–185, https://doi.org/10.1016/j.ijantimicag.2017.03.010.
  25. Kang J.Y., Lee D.K., Ha N.J., Shin H.S. Antiviral effects of Lactobacillus ruminis SPM0211 and Bifidobacterium longum SPM1205 and SPM1206 on rotavirus-infected Caco-2 cells and a neonatal mouse model. J Microbiol 2015; 53(11): 796–803, https://doi.org/10.1007/s12275-015-5302-2.
  26. Olaya Galán N.N., Ulloa Rubiano J.C., Velez Reyes F.A., Fernandez Duarte K.P., Salas Cárdenas S.P., Gutierrez Fernandez M.F. In vitro antiviral activity of Lactobacillus casei and Bifidobacterium adolescentis against rotavirus infection monitored by NSP4 protein production. J Appl Microbiol 2016; 120(4): 1041–1051, https://doi.org/10.1111/jam.13069.
  27. Lu W., Pei Z., Zang M., Zhao J., Chen W., Wang H., Zhang H. Comparative genomic analysis of Bifidobacterium bifidum strains isolated from different niches. Genes (Basel) 2021; 12(10): 1504, https://doi.org/10.3390/genes12101504.
  28. Tiwari S.K., Dicks L.M.T., Popov I.V., Karaseva A., Ermakov A.M., Suvorov A., Tagg J.R., Weeks R., Chikindas M.L. Probiotics at war against viruses: what is missing from the picture? Front Microbiol 2020; 11: 1877, https://doi.org/10.3389/fmicb.2020.01877.
  29. Alvarez-Sieiro P., Montalbán-López M., Mu D., Kuipers O.P. Bacteriocins of lactic acid bacteria: extending the family. Appl Microbiol Biotechnol 2016; 100(7): 2939–2951, https://doi.org/10.1007/s00253-016-7343-9.
  30. Maksimov M.O., Pan S.J., James Link A. Lasso peptides: structure, function, biosynthesis, and engineering. Nat Prod Rep 2012; 29(9): 996–1006, https://doi.org/10.1039/c2np20070h.
Tochilina A.G., Belova I.V., Ilyicheva T.N., Marchenko V.Yu., Zhirnov V.A., Molodtsova S.B., Ikonnikov A.V., Muhkina I.V., Blagonravova A.S., Soloveva I.V. Genome Features of Probiotic Bifidobacteria Determining Their Strain-Specific Properties. Sovremennye tehnologii v medicine 2022; 14(5): 36, https://doi.org/10.17691/stm2022.14.5.04


Journal in Databases

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg

SCImago Journal & Country Rank