Today: Nov 21, 2024
RU / EN
Last update: Oct 30, 2024
Clinical and Pathogenetic Significance of Amylase Level and Microtomographic Index of Synovial Fluid in Various Joint Lesions

Clinical and Pathogenetic Significance of Amylase Level and Microtomographic Index of Synovial Fluid in Various Joint Lesions

Schendrigin I.N., Timchenko L.D., Rzhepakovsky I.V., Avanesyan S.S., Sizonenko M.N., Grimm W.-D., Povetkin S.N., Piskov S.I.
Key words: joint pathology; synovial fluid; amylase activity; X-ray computed microtomography; X-ray density.
2022, volume 14, issue 6, page 42.

Full text

html pdf
1247
784

The aim of the investigation was to study the level of amylolytic activity and microtomographic index of synovial fluid density as well as to substantiate their clinical and pathogenetic significance by identifying correlations with the known informative indicators reflecting characteristic features of the pathological process in various joint diseases.

Materials and Methods. Samples of synovial fluid from 95 patients with various joint pathologies at the stage of the disease progression characterized by copious effusion into articular cavities have been examined. Synovial fluid samples obtained by knee arthrocentesis served as a material for the investigation. Conventional methods were used to determine the concentration of uric acid, inorganic phosphorus, total protein, and amylolytic activity level in the selected samples while X-ray density was identified by computed microtomography.

Results. All samples of pathological joint fluid have shown a high level of amylolytic activity as compared to the synovial fluid from healthy joints. The relationship between the level of amylolytic activity in synovia and specific joint pathology has been identified. It has also been found that uric acid values, inorganic phosphorus concentrations, and total protein in various types of joint damage may influence X-ray density of the synovial fluid. Correlations between the studied indices have been established.

Conclusion. New data on the level of synovia amylolytic activity has been obtained in one non-inflammatory and six different inflammatory diseases. Pathogenically determined correlation between the microtomographic index of synovial fluid density and concentrations of uric acid, inorganic phosphorus, total protein has been confirmed. Specific indicators of X-ray density of synovia in various joint pathologies as well as unidirectional and multidirectional data in comparison with the norm allow us to consider X-ray microtomography as a method that reveals additional details during investigation of synovial fluid density and brings new surrogate markers for the study of pathogenetic mechanisms of the development, differentiation, and treatment of various joint pathologies.

  1. Ryabinin S.V., Peleshenko E.I., Ryabinina E.I., Samodai V.G. Examination of the level of certain physicochemical indices of synovial fluid in normal and during gonartrosis. Prikladnye informacionnye aspekty mediciny 2020; 23(3): 90–96.
  2. Kotelkina A.A., Struchko G.Yu., Merkulova L.M., Kostrova O.Yu., Stomenskaya I.S., Timofeeva N.Yu. Characteristics of synovial fluid under normal conditions and in some patthological processes. Acta Medica Eurasica 2017; 4: 24–30.
  3. Ingale D., Kulkarni P., Electricwala A., Moghe A., Kamyab S., Jagtap S., Martson A., Koks S., Harsulkar A. Synovium-synovial fluid axis in osteoarthritis pathology: a key regulator of the cartilage degradation process. Genes (Basel) 2021; 12(7): 989, https://doi.org/10.3390/genes12070989.
  4. Mustonen A.M., Käkelä R., Joukainen A., Lehenkari P., Jaroma A., Kääriäinen T., Kröger H., Paakkonen T., Sihvo S.P., Nieminen P. Synovial fluid fatty acid profiles are differently altered by inflammatory joint pathologies in the shoulder and knee joints. Biology (Basel) 2021; 10(5): 401, https://doi.org/10.3390/biology10050401.
  5. Synyachenko O.V. Modern aspects synovyal liquid’s analysis. Ukrains'kij revmatologicnij zurnal 2008; 2: 30–39.
  6. Kriegova E., Manukyan G., Mikulkova Z., Gabcova G., Kudelka M., Gajdos P., Gallo J. Gender-related differences observed among immune cells in synovial fluid in knee osteoarthritis. Osteoarthritis Cartilage 2018; 26(9): 1247–1256, https://doi.org/10.1016/j.joca.2018.04.016.
  7. Hammodat Z.M., Mustafa L.A. Biochemical studies on synovial fluid and serum from rheumatoid arthritis patients. Raf J Sci 2018; 27(4): 37–46, https://doi.org/10.33899/rjs.2018.159385.
  8. Birkelund S., Bennike T.B., Kastaniegaard K., Lausen M., Poulsen T.B.G., Kragstrup T.W., Deleuran B.W., Christiansen G., Stensballe A. Proteomic analysis of synovial fluid from rheumatic arthritis and spondyloarthritis patients. Clin Proteomics 2020; 17: 29, https://doi.org/10.1186/s12014-020-09292-9.
  9. Timur U.T., Jahr H., Anderson J., Green D.C., Emans P.J., Smagul A., van Rhijn L.W., Peffers M.J., Welting T.J.M. Identification of tissue-dependent proteins in knee OA synovial fluid. Osteoarthritis Cartilage 2020; 29(1): 124–133, https://doi.org/10.1016/j.joca.2020.09.005.
  10. Ali N., Turkiewicz A., Hughes V., Folkesson E., Tjörnstand J., Neuman P., Önnerfjord P., Englund M. Proteomics profiling of human synovial fluid suggests increased protein interplay in early-osteoarthritis (OA) that is lost in late-stage OA. Mol Cell Proteomics 2022; 21(3): 100200, https://doi.org/10.1016/j.mcpro.2022.100200.
  11. Berthoud O., Coiffier G., Albert J.D., Gougeon-Jolivet A., Goussault C., Bendavid C., Guggenbuhl P. Performance of a new rapid diagnostic test the lactate/glucose ratio of synovial fluid for the diagnosis of septic arthritis. Joint Bone Spine 2020; 87(4): 343–350, https://doi.org/10.1016/j.jbspin.2020.03.009.
  12. Jaggard M.K.J., Boulangé C.L., Graça G., Akhbari P., Vaghela U., Bhattacharya R., Williams H.R.T., Lindon J.C., Gupte C.M. The influence of sample collection, handling and low temperature storage upon NMR metabolic profiling analysis in human synovial fluid. J Pharm Biomed Anal 2021; 197: 113942, https://doi.org/10.1016/j.jpba.2021.113942.
  13. Krishnan G.H., Nanda A., Natarajan A.R. Synovial fluid density measurement for diagnosis of arthritis. Biomed Pharmacol J 2015; 7(1): 221–224, https://doi.org/10.13005/bpj/476.
  14. Seagal Z.M., Surnina O.V., Brindin V.V., Seagal S.Z. Development of intraorganic transylumination and ultrasound monitoring in rheumatoid arthritis. Dnevnik kazanskoj medicinskoj skoly 2018; 1: 40–45.
  15. Micro-computed tomography (micro-CT) in medicine and engineering. Orhan K. (editor). Cham: Springer; 2020, https://doi.org/10.1007/978-3-030-16641-0.
  16. Sikilinda V.D., Alabut A.V. Protocols of technique of punctions of joints and treatment blocades in trauma and orthopedic diseases of support-moving apparatus. Glavnyj vrac Uga Rossii 2018; 2: 14–20.
  17. Prikaz Minzdrava Rossii ot 12.11.2012 No.900n “Ob utverzhdenii Poryadka okazaniya meditsinskoy pomoshchi vzroslomu naseleniyu po profilyu “revmatologiya” [Order of the Ministry of Health of Russia dated November 12, 2012 Nо.900n “On approval of the procedure for providing medical care to the adult population in the field of rheumatology”].
  18. Rzhepakovsky I., Siddiqui S.A., Avanesyan S., Benlidayi M., Dhingra K., Dolgalev A., Enukashvily N., Fritsch T., Heinz V., Kochergin S., Nagdalian A., Sizonenko M., Timchenko L., Vukovic M., Piskov S., Grimm W.D. Anti-arthritic effect of chicken embryo tissue hydrolyzate against adjuvant arthritis in rats (X-ray microtomographic and histopathological analysis). Food Sci Nutr 2021; 9(10): 5648–5669, https://doi.org/10.1002/fsn3.2529.
  19. Nagdalian A.A., Rzhepakovsky I.V., Siddiqui S.A., Piskov S.I., Oboturova N.P., Timchenko L.D., Lodygin A.D., Blinov A.V., Ibrahim S.A. Analysis of the content of mechanically separated poultry meat in sausage using computing microtomography. J Food Compos Anal 2021; 100: 103918, https://doi.org/10.1016/j.jfca.2021.103918.
  20. Matveeva E.L., Spirkina E.S., Gasanova A.G. Biochemical composition synovial fluid knee normal people. Uspehi sovremennogo estestvoznania 2015; 9(1): 122–125.
  21. Slack S.M. Properties of biological fluids. In: Biomaterials science (4th edition). Academic Press; 2020; p. 1519–1523, https://doi.org/10.1016/b978-0-12-816137-1.15001-9.
  22. Matveeva E.L., Gasanova A.G., Spirkina E.S. Prospects of synovial fluid investigation for clinical practice (review of literature). Genij ortopedii 2012; 2: 148–151.
  23. Mironov M.P., Zavadovskaya V.D., Zorkaltsev M.A., Kurazhov A.P., Fomina S.V., Shulga O.S., Zhogina T.V., Perova T.B. The possibility of using radiology modalities in the diagnosis of crystalline arthropathy. Bulleten' sibirskoj mediciny 2021; 20(1): 168–177, https://doi.org/10.20538/1682-0363-2021-1-168-177.
  24. Sudhyadhom A. On the molecular relationship between Hounsfield unit (HU), mass density, and electron density in computed tomography (CT). PLoS One 2020; 15(12): e0244861, https://doi.org/10.1371/journal.pone.0244861.
  25. Kono H., Chen C.J., Ontiveros F., Rock K.L. Uric acid promotes an acute inflammatory response to sterile cell death in mice. J Clin Invest 2010; 120(6): 1939–1949, https://doi.org/10.1172/jci40124.
  26. Denoble A.E., Huffman K.M., Stabler T.V., Kelly S.J., Hershfield M.S., McDaniel G.E., Coleman R.E., Kraus V.B. Uric acid is a danger signal of increasing risk for osteoarthritis through inflammasome activation. Proc Natl Acad Sci U S A 2021; 108(5): 2088–2093, https://doi.org/10.1073/pnas.1012743108.
  27. Doherty M., Belcher C., Regan M., Jones A., Ledingham J. Association between synovial fluid levels of inorganic pyrophosphate and short term radiographic outcome of knee osteoarthritis. Ann Rheum Dis 1996; 55(7): 432–436, https://doi.org/10.1136/ard.55.7.432.
  28. Spirkina E.S., Matveeva E.L., Gasanova A.G. Comparative characteristics of biochemical composition of synovial fluid of knee and elbow human joints. Bulleten' Vostocno-Sibirskogo naucnogo centra Sibirskogo otdelenia Rossijskoj akademii medicinskih nauk 2013; 2–1: 87–89.
  29. Güler N., Uçkan S., Imirzalıoğlu P., Açıkgözoğlu S. Temporomandibular joint internal derangement: relationship between joint pain and MR grading of effusion and total protein concentration in the joint fluid. Dentomaxillofac Radiol 2005; 34(3): 175–181, https://doi.org/10.1259/dmfr/49181266.
  30. Lipatov I.A., Buksha I.A. Pathochemical processes in gout. Vestnik Celabinskogo gosudarstvennogo universiteta. Obrazovanie i zdravoohranenie 2021; 4: 67–74.
  31. Vaidya B., Bhochhibhoya M., Nakarmi S. Synovial fluid uric acid level aids diagnosis of gout. Biomed Rep 2018; 9(1): 60–64, https://doi.org/10.3892/br.2018.1097.
  32. Yanysheva A.V. Metabolic disturbances in psoriatic arthritis. Sibirskij medicinskij zurnal 2009; 2: 25–28.
  33. Koroy P.V. Psoriatic arthritis. Vestnik molodogo ucenogo 2016; 12(1): 33–40.
  34. Teplova L.V., Eremeeva A.V., Baykova O.A., Suvorova N.A. Rheumatic manifestations of hypothyroidism. Sovremennaa revmatologia 2017; 11(2): 47–53, https://doi.org/10.14412/1996-7012-2017-2-47-53.
  35. Barskova V.G., Kudaeva F.M. Differential diagnosis of gouty arthritis. Consilium Medicum 2005; 7(8): 623–626.
  36. Zar V.V., Voloshin V.P., Shatochina S.N., Petushkova L.Yu., Shabalin V.N. Morphologic structures of synovial fluid in diagnosis of osteoarthrosis: condition and perspectives. Al’manah kliniceskoj mediciny 2012; 27: 57–65.
  37. Koltunov A.S., Alekseenko S.A., Koltunov S.S. A case report of macroamylasemia. Dal'nevostocnyj medicinskij zurnal 2019; 1: 88–90.
  38. Ivanova S.V. Parameters of the proteolytic system of the synovial fluid as diagnostic markers of certain forms of arthritis. Vestnik Vitebskogo gosudarstvennogo medicinskogo universiteta 2015; 14(2): 62–67.
  39. Hofer M. Komp’yuternaya tomografiya. Bazovoe rukovodstvo. Per. s angl. Kut’ko A.P., Pleshkova F.I., Ipatova V.V. Pod red. Trufanova G.E. [Computed tomography. Basic guide. Kut’ko A.P., Pleshkov F.I., Ipatov V.V. (translation from English). Trufanov G.E. (editor)]. Moscow: Meditsinskaya literatura; 2008; 228 p.
  40. Zhang K., Ji Y., Dai H., Khan A.A., Zhou Y., Chen R., Gui J. High-density lipoprotein cholesterol and apolipoprotein A1 in synovial fluid: potential predictors of disease severity of primary knee osteoarthritis. Cartilage 2021; 13(1_suppl): 1465S–1473S, https://doi.org/10.1177/19476035211007919.
  41. Oliviero F., Lo Nigro A., Bernardi D., Giunco S., Baldo G., Scanu A., Sfriso P., Ramonda R., Plebani M., Punzi L. A comparative study of serum and synovial fluid lipoprotein levels in patients with various arthritides. Clin Chim Acta 2012; 413(1–2): 303–307, https://doi.org/10.1016/j.cca.2011.10.019.
Schendrigin I.N., Timchenko L.D., Rzhepakovsky I.V., Avanesyan S.S., Sizonenko M.N., Grimm W.-D., Povetkin S.N., Piskov S.I. Clinical and Pathogenetic Significance of Amylase Level and Microtomographic Index of Synovial Fluid in Various Joint Lesions. Sovremennye tehnologii v medicine 2022; 14(6): 42, https://doi.org/10.17691/stm2022.14.6.05


Journal in Databases

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg

SCImago Journal & Country Rank