The Influence of Weaving Technologies on the Integral Characteristics of Synthetic Vascular Prostheses
The aim of the study is to determine physical and structural properties of woven synthetic prostheses depending on the type of the weave.
Materials and Methods. Ten vascular prostheses manufactured at the Science and Technology Park of the BNTU “Polytechnic” (Minsk, Republic of Belarus) have been analyzed. The prostheses differed in the type of weaving, duration and temperature of thermal fixation during crimping. Three samples had a single-layer structure and 7 samples had a double-layer structure. Tests for water permeability, resistance to radial bending, and porosity of the prostheses have been performed.
Results. The single-layer woven prostheses have demonstrated a low level of water permeability: the best result was shown by sample No.1: 80 [77.1; 80.5] ml/min/cm2. A strong direct correlation was revealed for these prostheses: the larger the pore diameter, the greater permeability (r=0.778; p=0.05). The single-layer woven prostheses appeared to be most resistant to radial bending, samples No.1 and 3 had no deformations at the minimum radius of the cylinder (R<4 mm), sample No.2 showed deformation on the cylinder with R=5 mm. For the single-layer prostheses, a strong negative correlation was noted (r=‒0.97; p=0.04) between the density of the warp threads and the kinking radius.
All double-layer prostheses have demonstrated higher water permeability and weak resistance to deformation during radial bending. Samples No.4 and 8 were found to have minimum and maximum water permeability of 276.5 [258.3; 288.4] and 538.8 [533.3; 564.3] ml/min/cm2, respectively. The minimum kinking radius (7 mm) was shown by samples No.9 and 10. The worst results were demonstrated by sample No.6, which was deformed with minimal bending.
Conclusion. Samples with ordinary plain weave have a low level of water permeability and high resistance to radial deformation, which makes them look most promising for the application in vascular surgery.
- Blakemore A.H., Lord J.W., Stefko P.L. Restoration of blood flow in damaged arteries: further studies on a nonsuture method of blood vessel anastomosis. Ann Surg 1943; 117(4): 481–497, https://doi.org/10.1097/00000658-194304000-00001.
- Deterling R.A. Jr. Recent advances in vascular surgery; a review of the literature. Arch Surg (1920) 1947; 55(1): 31–50, https://doi.org/10.1001/archsurg.1947.01230080034003.
- Sánchez P.F., Brey E.M., Briceño J.C. Endothelialization mechanisms in vascular grafts. J Tissue Eng Regen Med 2018; 12(11): 2164–2178, https://doi.org/10.1002/term.2747.
- Zhang Z., Wang Z., Liu S., Kodama M. Pore size, tissue ingrowth, and endothelialization of small-diameter microporous polyurethane vascular prostheses. Biomaterials 2004; 25(1): 177–187, https://doi.org/10.1016/s0142-9612(03)00478-2.
- Zilla P., Bezuidenhout D., Human P. Prosthetic vascular grafts: wrong models, wrong questions and no healing. Biomaterials 2007; 28(34): 5009–5027, https://doi.org/10.1016/j.biomaterials.2007.07.017.
- De Bakey M.E., Cooley D.A., Crawford E.S., Morris G.C. Jr. Clinical application of a new flexible knitted dacron arterial substitute. AMA Arch Surg 1958; 77(5): 713–724, https://doi.org/10.1001/archsurg.1958.01290040061008.
- Alimi Y., Juhan C., Morati N., Girard N., Cohen S. Dilation of woven and knitted aortic prosthetic grafts: CT scan evaluation. Ann Vasc Surg 1994; 8(3): 238–242, https://doi.org/10.1007/bf02018170.
- Wu M.H., Shi Q., Wechezak A.R., Clowes A.W., Gordon I.L., Sauvage L.R. Definitive proof of endothelialization of a Dacron arterial prosthesis in a human being. J Vasc Surg 1995; 21(5): 862–867, https://doi.org/10.1016/s0741-5214(05)80019-9.
- Pokrovskiy A.V., Gontarenko V.N. Sostoyanie sosudistoy khirurgii v Rossii v 2014 godu [The state of vascular surgery in Russia in 2014]. Moscow: Rossiyskoe obshchestvo angiologov i sosudistykh khirurgov; 2015; 99 p. URL: https://www.angiolsurgery.org/society/situation/2014/.
- Pokrovskiy A.V., Golovyuk A.L.; Russian Society of Angiologists and Vascular Surgeons. The state of vascular surgery in the Russian Federation in 2018. Angiologiia i sosudistaia khirurgiia 2019; 25(2, Suppl). URL: https://angiolsurgery.org/society/situation/2018.pdf.
- Zhuravleva I.Yu., Lyashenko M.M., Shadanov A.A., Sirota D.A., Cherniavskiy A.M. Quo vadimus? Fundamental problems of developing hybrid prostheses of thoracic aorta. Angiologiia i sosudistaia khirurgiia 2021; 27(4): 103–112, https://doi.org/10.33529/angio2021412.
- Xue L., Greisler H.P. Biomaterials in the development and future of vascular grafts. J Vasc Surg 2003; 37(2): 472–480, https://doi.org/10.1067/mva.2003.88.
- Islam M.S. Relationship between textile irregularities and pre-mature rupture of polyester vascular graft knitted fabric. MSc Thesis. Winnipeg: University of Mannitoba; 2017.
- ISO 7198:2016. Cardiovascular implants and extracorporeal systems — Vascular prostheses — Tubular vascular grafts and vascular patches. URL: https://www.iso.org/standard/50661.html.
- Palmaz J.C. Review of polymeric graft materials for endovascular applications. J Vasc Interv Radiol 1998; 9(1 Pt 1): 7–13, https://doi.org/10.1016/s1051-0443(98)70476-2.
- Santos I.C.T., Rodrigues A., Figueiredo L., Rocha L.A., Tavares J.M.R.S. Mechanical properties of stent–graft materials. Proc Inst Mech Eng Pt L J Mater Des Appl 2012; 226(4): 330–341, https://doi.org/10.1177%2f1464420712451065.
- Mattens E., Engels P., Hamerlijnck R., Kelder J., Schepens M., de Valois J., Vermeulen F., Wijers L. Gelseal® versus Gelweave® dacron prosthetic grafts in the descending thoracic aorta: a two-year computed tomography scan follow-up study. Cardiovasc Surg 2016; 7(4): 432–435, https://doi.org/10.1016/s0967-2109(98)00168-9.
- Mokhtar S., Ben Abdessalem S., Sakli F. Simultaneous optimization of plain woven vascular prostheses performances. J Appl Sci 2009; 9(22): 3983–3990, https://doi.org/10.3923/jas.2009.3983.3990.
- Dvorak H.F., Nagy J.A., Berse B., Brown L.F., Yeo K.T., Yeo T.K., Dvorak A.M., van de Water L., Siousat T.M., Senger D.R. Vascular permeability factor, fibrin, and the pathogenesis of tumor stroma formation. Ann N Y Acad Sci 1992; 667: 101–111, https://doi.org/10.1111/j.1749-6632.1992.tb51603.x.
- Gamble J.R., Matthias L.J., Meyer G., Kaur P., Russ G., Faull R., Berndt M.C., Vadas M.A. Regulation of in vitro capillary tube formation by anti-integrin antibodies. J Cell Biol 1993; 121(4): 931–943, https://doi.org/10.1083/jcb.121.4.931.
- Hirschi K.K., Rohovsky S.A., D’Amore P.A. Cell-cell interactions in vessel assembly: a model for the fundamentals of vascular remodelling. Transpl Immunol 1997; 5(3): 177–178, https://doi.org/10.1016/s0966-3274(97)80034-2.
- Beck L.J., D’Amore P.A. Vascular development: cellular and molecular regulation. FASEB J 1997; 11(5): 365–373, https://doi.org/10.1096/fasebj.11.5.9141503.
- Pourdeyhimi B., Text C. A review of structural and material properties of vascular grafts. J Biomater Appl 1987; 2(2): 163–204, https://doi.org/10.1177%2f088532828700200201.
- Sauvage L.R., Berger K., Wood S.J., Nakagawa Y., Mansfield P.B. An external velour surface for porous arterial prostheses. Surgery 1971; 70(6): 940–953.
- King M.W., Marois Y., Guidoin R., Ukpabi P., Deng X., Martin L., Pǎris E., Douville Y. Evaluating the dialine®vascular prosthesis knitted from an alternative source of polyester yarns. J Biomed Mater Res 1995; 29(5): 595–610, https://doi.org/10.1002/jbm.820290507.
- Wukasch D.C., Cooley D.A., Bennett J.G., Gontijo B., Bongiorno F.P. Results of a new Meadox–Cooley double velour dacron graft for arterial reconstruction. J Cardiovasc Surg (Torino) 1979; 20(3): 249–260.
- Blumenberg R.M., Gelfand M.L., Barton E.A., Bowers C.A., Gittleman D.A. Clinical significance of aortic graft dilation. J Vasc Surg 1991; 14(2): 175–180, https://doi.org/10.1067/mva.1991.28988.
- Mokhtar S., Ben Abdessalem S., Sakli F. Optimization of textile parameters of plain woven vascular prostheses. J Text Inst 2010; 101(12): 1095–1105, https://doi.org/10.1080/00405000903363597.
- Guidoin R., King M., Deng X., Paris E., Douville Y. Polyester. Arterial prostheses. J Biomed Mat Res 1982; 21: 65–87.
- Pourdeyhimi B., Text C. Vascular grafts: textile structures and their performance. Text Prog 1986; 15(3): 1–30, https://doi.org/10.1080/00405168608688902.
- Guan G., Yu C., Fang X., Guidoin R., King M.W., Wang H., Wang L. Exploration into practical significance of integral water permeability of textile vascular grafts. J Appl Biomater Funct Mater 2021; 19: 22808000211014007, https://doi.org/10.1177/22808000211014007.
- Greenwald S.E., Berry C.L. Improving vascular grafts: the importance of mechanical and haemodynamic properties. J Pathol 2000; 190(3): 292–299, https://doi.org/10.1002/(sici)1096-9896(200002) 190:3%3c292::aid-path528%3e3.0.co;2-s.