Sciatic Nerve Plastic Surgery Using Autologous Adipose Tissue
The aim of the investigation is to study structural alterations of autologous omental adipose tissue in a silicon conduit and to evaluate its possible use for regeneration of the sciatic nerve in diastasis.
Materials and Methods. Mature outbred male Wistar rats have been used in the study. The animals were divided into 7 experimental groups with complete transection of the sciatic nerve on the right side at the mid-third level of the thigh. The ends of the transected nerve were pulled apart, inserted into a silicon conduit, and secured to the epineurium. The conduit of group 1 (control) was filled with a saline solution; in group 2, it was filled with an autologous omental adipose tissue with saline solution. Intravital labeling of the omental adipose tissue with the lipophilic PKH 26 dye (in group 3) was used for the first time to find out whether the omental cells were involved in formation of the regenerating nerve. Diastasis in groups 1–3 was 5 mm, the postoperative period was 14 weeks. The dynamics of the omental adipose tissue changes in groups 4–7 was assessed by placing the omental tissues into the conduit covering 2 mm of diastasis. The postoperative period was 4, 14, 21, and 42 weeks.
Results. In group 2 (omental adipose tissue + saline), the clinical condition of the damaged limb after 14 weeks may be evaluated as satisfactory and approximating to the intact parameters as compared to group 1 where the conduit was filled with a saline solution only. The sum of large and medium-sized nerve fibers in group 2 was 2.7 times greater than that in group 2. The milled omental adipose tissue inside the conduit changed its volume and structure in nerve diastasis and was constantly utilized up to complete elimination over time. The omental cells integrated into the newly formed nerve in the graft area.
Conclusion. As a graft, the adipose tissue of the autologous omentum produces a stimulating effect on the post-traumatic regeneration of the sciatic nerve.
- Nemoz-Billet L., Bretaud S., Ruggiero F. The role of extracellular matrix in the regeneration of motor nerves. Med Sci (Paris) 2021; 37(1): 11–14, https://doi.org/10.1051/medsci/2021183.
- Yamamoto D., Tada K., Suganuma S., Hayashi K., Nakajima T., Nakada M., Matsuta M., Tsuchiya H. Differentiated adipose-derived stem cells promote peripheral nerve regeneration. Muscle Nerve 2020; 62(1): 119–127, https://doi.org/10.1002/mus.26879.
- Zhou L.N., Wang J.C., Zilundu P.L.M., Wang Y.Q., Guo W.P., Zhang S.X., Luo H., Zhou J.H., Deng R.D., Chen D.F. A comparison of the use of adipose-derived and bone marrow-derived stem cells for peripheral nerve regeneration in vitro and in vivo. Stem Cell Res Ther 2020; 11(1): 153, https://doi.org/10.1186/s13287-020-01661-3.
- Trehan S.K., Model Z., Lee S.K. Nerve repair and nerve grafting. Hand Clin 2016; 32(2): 119–125, https://doi.org/10.1016/j.hcl.2015.12.002.
- Schiraldi L., Sottaz L., Madduri S., Campisi C., Oranges C.M., Raffoul W., Kalbermatten D.F., di Summa P.G. Split-sciatic nerve surgery: a new microsurgical model in experimental nerve repair. J Plast Reconstr Aesthet Surg 2018; 71(4): 557–565, https://doi.org/10.1016/j.bjps.2017.11.007.
- Lin T., Liu S., Chen S., Qiu S., Rao Z., Liu J., Zhu S., Yan L., Mao H., Zhu Q., Quan D., Liu X. Hydrogel derived from porcine decellularized nerve tissue as a promising biomaterial for repairing peripheral nerve defects. Acta Biomater 2018; 73: 326–338, https://doi.org/10.1016/j.actbio.2018.04.001.
- di Summa P.G., Kalbermatten D.F., Pralong E., Raffoul W., Kingham P.J., Terenghi G. Long-term in vivo regeneration of peripheral nerves through bioengineered nerve grafts. Neuroscience 2011; 181: 278–291, https://doi.org/10.1016/j.neuroscience.2011.02.052.
- Haselbach D., Raffoul W., Larcher L., Tremp M., Kalbermatten D.F., di Summa P.G. Regeneration patterns influence hindlimb automutilation after sciatic nerve repair using stem cells in rats. Neurosci Lett 2016; 634: 153–159, https://doi.org/10.1016/j.neulet.2016.10.024.
- Labroo P., Shea J., Edwards K., Ho S., Davis B., Sant H., Goodwin I., Gale B., Agarwal J. Novel drug delivering conduit for peripheral nerve regeneration. J Neural Eng 2017; 14(6): 066011, https://doi.org/10.1088/1741-2552/aa867d.
- Di Summa P.G., Schiraldi L., Cherubino M., Oranges C.M., Kalbermatten D.F., Raffoul W., Madduri S. Adipose derived stem cells reduce fibrosis and promote nerve regeneration in rats. Anat Rec (Hoboken) 2018; 301(10): 1714–1721, https://doi.org/10.1002/ar.23841.
- Wang W., Degrugillier L., Tremp M., Prautsch K., Sottaz L., Schaefer D.J., Madduri S., Kalbermatten D. Nerve repair with fibrin nerve conduit and modified suture placement. Anat Rec (Hoboken) 2018; 301(10): 1690–1696, https://doi.org/10.1002/ar.23921.
- Bacakova L., Zarubova J., Travnickova M., Musilkova J., Pajorova J., Slepicka P., Kasalkova N.S., Svorcik V., Kolska Z., Motarjemi H., Molitor M. Stem cells: their source, potency and use in regenerative therapies with focus on adipose-derived stem cells — a review. Biotechnol Adv 2018; 36(4): 1111–1126, https://doi.org/10.1016/j.biotechadv.2018.03.011.
- Trávníčková M., Bačáková L. Application of adult mesenchymal stem cells in bone and vascular tissue engineering. Physiol Res 2018; 67(6): 831–850, https://doi.org/10.33549/physiolres.933820.
- Grigorian A.S., Kruglyakov P.V. Spontaneous multipotent mesenchymal stromal cells malignant transformation in culture — does it really exist? Kletocnaa transplantologia i tkanevaa inzeneria 2009; 4(4): 78–82.
- Podsednik A., Cabrejo R., Rosen J. Adipose tissue uses in peripheral nerve surgery. Int J Mol Sci 2022; 23(2): 644, https://doi.org/10.3390/ijms23020644.
- Saffari T.M., Saffari S., Vyas K.S., Mardini S., Shin A.Y. Role of adipose tissue grafting and adipose-derived stem cells in peripheral nerve surgery. Neural Regen Res 2022; 17(10): 2179–2184, https://doi.org/10.4103/1673-5374.336870.
- Matz R.L., Erickson B., Vaidyanathan S., Kukowska-Latallo J.F., Baker J.R. Jr., Orr B.G., Banaszak Holl M.M. Polyplex exposure inhibits cell cycle, increases inflammatory response, and can cause protein expression without cell division. Mol Pharm 2013; 10(4): 1306–1317, https://doi.org/10.1021/mp300470d.
- Rieck B. Unexpected durability of PKH 26 staining on rat adipocytes. Cell Biol Int 2003; 27(5): 445–447, https://doi.org/10.1016/s1065-6995(03)00036-2.
- Pavlichenko N., Sokolova I., Vijde S., Shvedova E., Alexandrov G., Krouglyakov P., Fedotova O., Gilerovich E.G., Polyntsev D.G., Otellin V.A. Mesenchymal stem cells transplantation could be beneficial for treatment of experimental ischemic stroke in rats. Brain Res 2008; 1233: 203–213, https://doi.org/10.1016/j.brainres.2008.06.123.
- Kruglyakov P.V., Sokolova I.B., Amineva X.K., Nekrasova N.N., Viyde S.V., Cherednichenko N.N., Zaritskiy A.Yu., Semernin E.N., Kislyakova T.V., Polyntsev D.G. Therapy of experimental myocardial infarction in rats using syngeneic mesenchymal stem cell transplantation. Citologia 2004; 46(12): 1043–1054.
- Velichanskaya A.G., Abrosimov D.A., Bugrova M.L., Kazakov A.V., Pogadaeva E.V., Radaev A.M., Blagova N.V., Vasyagina T.I., Ermolin I.L. Reconstruction of the rat sciatic nerve by using biodegradable and non-biodegradable conduits. Sovremennye tehnologii v medicine 2020; 12(5): 48, https://doi.org/10.17691/stm2020.12.5.05.
- Liu G., Cheng Y., Guo S., Feng Y., Li Q., Jia H., Wang Y., Tong L., Tong X. Transplantation of adipose-derived stem cells for peripheral nerve repair. Int J Mol Med 2011; 28(4): 565–572, https://doi.org/10.3892/ijmm.2011.725.
- Kim I.G., Piao S., Lee J.Y., Hong S.H., Hwang T.K., Kim S.W., Kim C.S., Ra J.C., Noh I., Lee J.Y. Effect of an adipose-derived stem cell and nerve growth factor-incorporated hydrogel on recovery of erectile function in a rat model of cavernous nerve injury. Tissue Eng Part A 2013; 19(1–2): 14–23, https://doi.org/10.1089/ten.tea.2011.0654.
- Suganuma S., Tada K., Hayashi K., Takeuchi A., Sugimoto N., Ikeda K., Tsuchiya H. Uncultured adipose-derived regenerative cells promote peripheral nerve regeneration. J Orthop Sci 2013; 18(1): 145–151, https://doi.org/10.1007/s00776-012-0306-9.
- Kato H., Mineda K., Eto H., Doi K., Kuno S., Kinoshita K., Kanayama K., Yoshimura K. Degeneration, regeneration, and cicatrization after fat grafting: dynamic total tissue remodeling during the first 3 months. Plast Reconstr Surg 2014; 133(3): 303e–313e, https://doi.org/10.1097/prs.0000000000000066.
- Mashiko T., Yoshimura K. How does fat survive and remodel after grafting? Clin Plast Surg 2015; 42(2): 181–190, https://doi.org/10.1016/j.cps.2014.12.008.
- Brosius Lutz A., Chung W.S., Sloan S.A., Carson G.A., Zhou L., Lovelett E., Posada S., Zuchero J.B., Barres B.A. Schwann cells use TAM receptor-mediated phagocytosis in addition to autophagy to clear myelin in a mouse model of nerve injury. Proc Natl Acad Sci U S A 2017; 114(38): E8072–E8080, https://doi.org/10.1073/pnas.1710566114.
- Li R., Li D., Wu C., Ye L., Wu Y., Yuan Y., Yang S., Xie L., Mao Y., Jiang T., Li Y., Wang J., Zhang H., Li X., Xiao J. Nerve growth factor activates autophagy in Schwann cells to enhance myelin debris clearance and to expedite nerve regeneration. Theranostics 2020; 10(4): 1649–1677, https://doi.org/10.7150/thno.40919.
- Papalia I., Raimondo S., Ronchi G., Magaudda L., Giacobini-Robecchi M.G., Geuna S. Repairing nerve gaps by vein conduits filled with lipoaspirate-derived entire adipose tissue hinders nerve regeneration. Ann Anat 2013; 195(3): 225–230, https://doi.org/10.1016/j.aanat.2012.10.012.
- Eto H., Suga H., Inoue K., Aoi N., Kato H., Araki J., Doi K., Higashino T., Yoshimura K. Adipose injury-associated factors mitigate hypoxia in ischemic tissues through activation of adipose-derived stem/progenitor/stromal cells and induction of angiogenesis. Am J Pathol 2011; 178(5): 2322–2332, https://doi.org/10.1016/j.ajpath.2011.01.032.
- Eto H., Kato H., Suga H., Aoi N., Doi K., Kuno S., Yoshimura K. The fate of adipocytes after nonvascularized fat grafting: evidence of early death and replacement of adipocytes. Plast Reconstr Surg 2012; 129(5): 1081–1092, https://doi.org/10.1097/prs.0b013e31824a2b19.
- Santiago L.Y., Clavijo-Alvarez J., Brayfield C., Rubin J.P., Marra K.G. Delivery of adipose-derived precursor cells for peripheral nerve repair. Cell Transplant 2009; 18(2): 145–158, https://doi.org/10.3727/096368909788341289.