Today: Apr 4, 2025
RU / EN
Last update: Mar 25, 2025
New Tissue-Engineered Vascular Matrix Based on Regenerated Silk Fibroin: <i>in vitro</i> Study

New Tissue-Engineered Vascular Matrix Based on Regenerated Silk Fibroin: in vitro Study

Prokudina E.S., Senokosova E.A., Antonova L.V., Krivkina E.O., Velikanova E.A., Akentieva T.N., Glushkova T.V., Matveeva V.G., Kochergin N.A.
Key words: vascular patch; tissue engineering; silk fibroin; electrospinning; biocompatibility.
2023, volume 15, issue 4, page 41.

Full text

html pdf
870
789

The aim of the study was to make a vascular patch based on regenerated silk fibroin (SF) and study its physical and mechanical characteristics, biocompatibility and matrix properties in comparison with polyhydroxybutyrate/valerate/polycaprolactone with incorporated vascular endothelial growth factor (PHBV/PCL/VEGF) and commercial bovine xenopericardium (XP) flap in experiments in vitro.

Materials and Methods. Tissue-engineered matrices were produced by electrospinning. The surface structure, physical and mechanical characteristics, hemocompatibility (erythrocyte hemolysis, aggregation, adhesion and activation of platelets after contact with the material) and matrix properties of vascular patches (adhesion, viability, metabolic activity of EA.hy926 cells on the material) were studied.

Results. The surface of SF-based matrices and PHBV/PCL/VEGF-based tissue engineered patches had a porous and fibrous structure compared to a denser and more uniform XP flap. The physical and mechanical characteristics of SF matrices were close to those of native vessels. Along with this, tissue-engineered patches demonstrated high hemocompatible properties, which do not differ from those for commercial XP flap. Adhesion, viability, and metabolic activity of EA.hy926 endothelial cells also corresponded to the previously developed PHBV/PCL/VEGF matrix and XP flap, which indicates the nontoxicity and biocompatibility of SF matrices.

Conclusion. Matrices produced from regenerated SF demonstrated satisfactory results, comparable to those for PHBV/PCL/VEGF and commercial XP flap, and in the case of platelet adhesion and activation, they outperformed these patches. In total, SF can be defined as material having sufficient biological compatibility, which makes it possible to consider a tissue-engineered matrix made from it as promising for implantation into the vascular wall.


Journal in Databases

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg

SCImago Journal & Country Rank