Today: Jan 22, 2025
RU / EN
Last update: Dec 27, 2024
Laser Soldering of Cartilage Tissue to Collagenous Biomaterial (an <i>in vitro</i> Study)

Laser Soldering of Cartilage Tissue to Collagenous Biomaterial (an in vitro Study)

Ignatieva N.Yu., Zakharkina O.L., Sviridov A.P.
Key words: laser soldering; cartilage tissue; collagen denaturation.
2023, volume 15, issue 6, page 31.

Full text

html pdf
507
545

The aim of the study was to assess the effectiveness of laser soldering of biological tissues and materials for bulk heating of albumin solder on the joints of the intact and chemically modified cartilage of the porcine nasal septum.

Materials and Methods. The materials for soldering were double-trypsinized and glyceraldehyde-treated plates made from cartilage of the porcine nasal septum, and intact cartilage. A 25% albumin solution was used as a solder. The junction was heated by laser radiation with the wavelengths of 1.56 and 1.68 µm through an optical fiber. The process was monitored using a digital USB microscope. After the materials were soldered, mechanical tests of the samples were conducted, and the fraction of intact collagen in the areas adjacent to the solder was determined. A thermal imager was used to record the dynamics of the temperature field in the area of laser exposure.

Results. The effective soldering of cartilage tissue with collagenous biomaterial occurs with sequential application and laser heating of two/three layers of solder for radiation with wavelengths of 1.68/1.56 µm, respectively. The laser power densities for the solder layers were 0.7/0.8 W/mm2 (the average surface temperature ~85°C) for λ=1.68 µm and 1.77/1.34/0.96 W/mm2 (the average surface temperature ~100°C) for λ=1.56 µm. The tensile strength of the soldered samples reached ~12% for λ=1.56 µm and ~15% for λ=1.68 µm of the tensile strength of intact cartilage. In the tissue areas adjacent to the first layer of albumin, at a thickness of ~300 µm, most of the collagen network was destroyed. In other areas, collagen was predominantly preserved.

Conclusion. Laser soldering of chemically modified and intact cartilages can be effectively conducted using radiation of λ=1.56 µm and λ=1.68 µm, absorbed not only by the solder, but also by the tissue. However, to minimize the area of degradation, it is necessary to match the diameter of the laser spot and the size of the solder-filled cavity between the construction and the intact cartilage.

  1. Foyt D., Johnson J.P., Kirsch A.J., Bruce J.N., Wazen J.J. Dural closure with laser tissue welding. Otolaryngol Head Neck Surg 1996; 115(6): 513–518, https://doi.org/10.1016/s0194-59989670005-0.
  2. McNally K.M., Sorg B.S., Chan E.K., Welch A.J., Dawes J.M., Owen E.R. Optimal parameters for laser tissue soldering. Part 1: tensile strength and scanning electron microscopy analysis. Lasers Surg Med 1999; 24(5): 319–331, https://doi.org/10.1002/(sici)1096-9101 (1999)24:5319::aid-lsm23.0.co;2-n.
  3. Kramer E.A., Rentschler M.E. Energy-based tissue fusion for sutureless closure: applications, mechanisms, and potential for functional recovery. Annu Rev Biomed Eng 2018; 20: 1–20, https://doi.org/10.1146/annurev-bioeng-071516-044702.
  4. Ashbell I., Agam N., Katzir A., Basov S., Platkov M., Avital I., Nisky I., Netz U. Laser tissue soldering of the gastrointestinal tract: a systematic review LTS of the gastrointestinal tract. Heliyon 2023; 9(5): e16018, https://doi.org/10.1016/j.heliyon.2023.e16018.
  5. Züger B.J., Ott B., Mainil-Varlet P., Schaffner T., Clémence J.F., Weber H.P., Frenz M. Laser solder welding of articular cartilage: tensile strength and chondrocyte viability. Lasers Surg Med 2001; 28(5): 427–434, https://doi.org/10.1002/lsm.1070.
  6. Gerasimenko A.Y., Morozova E.A., Ryabkin D.I., Fayzullin A., Tarasenko S.V., Molodykh V.V., Pyankov E.S., Savelyev M.S., Sorokina E.A., Rogalsky A.Y., Shekhter A., Telyshev D.V. Reconstruction of soft biological tissues using laser soldering technology with temperature control and biopolymer nanocomposites. Bioengineering (Basel) 2022; 9(6): 238, https://doi.org/10.3390/bioengineering9060238.
  7. Gerasimenko A.Yu., Gubar’kov O.V., Ichkitidze L.P., Podgaetskiy V.M., Selishchev S.V., Ponomareva O.V. Nanocomposite solder for laser fusion of biological tissues. Izvestia vyssih ucebnyh zavedenij. Elektronika 2010; 4: 33–41.
  8. Hale G.M., Querry M.R. Optical constants of water in the 200-nm to 200-μm wavelength region. Appl Opt 1973; 12(3): 555–563, https://doi.org/10.1364/ao.12.000555.
  9. Gabay I., Basov S., Varssano D., Barequet I., Rosner M., Rattunde M., Wagner J., Platkov M., Harlev M., Rossman U., Katzir A. Closure of incisions in cataract surgery in-vivo using a temperature controlled laser soldering system based on a 1.9 μm semiconductor laser. Proc. SPIE 9702, Optical Fibers and Sensors for Medical Diagnostics and Treatment Applications XVI, 97020B (2016), https://doi.org/10.1117/12.2209133.
  10. Forer B., Vasileyev T., Gil Z., Brosh T., Kariv N., Katzir A., Fliss D.M. CO2 laser fascia to dura soldering for pig dural defect reconstruction. Skull Base 2007; 17(1): 17–23, https://doi.org/10.1055/s-2006-959332.
  11. Mistry Y.A., Natarajan S.S., Ahuja S.A. Evaluation of laser tissue welding and laser-tissue soldering for mucosal and vascular repair. Ann Maxillofac Surg 2018; 8(1): 35–41, https://doi.org/10.4103/ams.ams_147_17.
  12. Simhon D., Halpern M., Brosh T., Vasilyev T., Ravid A., Tennenbaum T., Nevo Z., Katzir A. Immediate tight sealing of skin incisions using an innovative temperature-controlled laser soldering device: in vivo study in porcine skin. Ann Surg 2007; 245(2): 206–213, https://doi.org/10.1097/01.sla.0000232554.13719.10.
  13. Basov S., Varssano D., Platkov M., Gabay I., Rosner M., Barequet I., Rattunde M., Wagner J., Harlev M., Ofer D., Nisky I., Dankner Y., Katzir A. Strong bonding of corneal incisions using a noncontact fiber-optic laser soldering method. J Biomed Opt 2019; 24(12): 128002, https://doi.org/10.1117/1.jbo.24.12.128002.
  14. Yafit D., Basov S., Katzir A., Fliss D., DeRowe A. Laser soldering of cartilage graft interposed into a tracheal incision in a porcine model. Laryngoscope 2019; 129(1): 58–62, https://doi.org/10.1002/lary.27468.
  15. Basov S., Milstein A., Sulimani E., Platkov M., Peretz E., Rattunde M., Wagner J., Netz U., Katzir A., Nisky I. Robot-assisted laser tissue soldering system. Biomed Opt Express 2018; 9(11): 5635–5644, https://doi.org/10.1364/boe.9.005635.
  16. Semenov V.F. The application of laser beam welding of biological tissues for the purpose of ossiculoplasty. Vestnik otorinolaringologii 2013; 6: 58–59.
  17. Ignatieva N.Yu., Zakharkina О.L., Sergeeva Е.А., Serezhnikova N.B., Faizullin А.L., Shekhter А.B. Development of a two-layer porous scaffold based on porcine nasal septal cartilage for orthopedics. Sovremennye tehnologii v medicine 2021; 13(4): 48, https://doi.org/10.17691/stm2021.13.4.05.
  18. Relkin P., Mulvihill D.M. Thermal unfolding of β-lactoglobulin, α-lactalbumin, and bovine serum albumin. A thermodynamic approach. Crit Rev Food Sci Nutr 1996; 36(6): 565–601, https://doi.org/10.1080/10408399609527740.
  19. Rabi Y., Katzir A. Temporal heating profile influence on the immediate bond strength following laser tissue soldering. Lasers Surg Med 2010; 42(5): 425–432, https://doi.org/10.1002/lsm.20927.
  20. McNally K.M., Sorg B.S., Welch A.J., Dawes J.M., Owen E.R. Photothermal effects of laser tissue soldering. Phys Med Biol 1999; 44(4): 983–1002, https://doi.org/10.1088/0031-9155/44/4/013.
  21. Chan E.K., Brown D.T., Kovach I.S., Welch A.J. Laser assisted soldering: effects of hydration on solder-tissue adhesion. J Biomed Opt 1998; 3(4): 456–461, https://doi.org/10.1117/1.429895.
  22. Dong J., Breitenborn H., Piccoli R., Besteiro L.V., You P., Caraffini D., Wang Z.M., Govorov A.O., Naccache R., Vetrone F., Razzari L., Morandotti R. Terahertz three-dimensional monitoring of nanoparticle-assisted laser tissue soldering. Biomed Opt Express 2020; 11(4): 2254–2267, https://doi.org/10.1364/boe.389561.
  23. Chen Y., Huang J., Xia S., Wang K., Rui Y. Effect of laser energy on protein conformation and lipid structure in skin tissue. Opt Laser Technol 2023; 160: 109077, https://doi.org/10.1016/j.optlastec.2022.109077.
  24. Sviridov A.P., Zakharkina O.L., Ignatieva N.Y., Vorobieva N.N., Bagratashvili N.V., Plyakin V.A., Kulik I.O., Sarukhanyan O.O., Minaev V.P., Lunin V.V., Bagratashvili V.N. Ex vivo laser thermoplasty of whole costal cartilages. Lasers Surg Med 2014; 46(4): 302–309, https://doi.org/10.1002/lsm.22233.
  25. Horváthy D.B., Simon M., Schwarz C.M., Masteling M., Vácz G., Hornyák I., Lacza Z. Serum albumin as a local therapeutic agent in cell therapy and tissue engineering. Biofactors 2017; 43(3): 315–330, https://doi.org/10.1002/biof.1337.
Ignatieva N.Yu., Zakharkina O.L., Sviridov A.P. Laser Soldering of Cartilage Tissue to Collagenous Biomaterial (an in vitro Study). Sovremennye tehnologii v medicine 2023; 15(6): 31, https://doi.org/10.17691/stm2023.15.6.04


Journal in Databases

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg

SCImago Journal & Country Rank