Impact of Sandblasting and Plasma Electrolytic Oxidation on Surface Quality of Dental Implants
Titanium alloys have high biocompatibility, and, therefore, they are widely used in the production of implantable medical devices. Implants, in turn, must have certain surface properties for a positive osseointegration. To improve biocompatibility, as well as cell viability, numerous implant surface modifications have been proposed in order to improve topography, roughness parameters, and surface layer chemical and phase compositions.
The most common type of surface treatment for dental implants involves sandblasting with aluminum oxide Al2O3 (corundum). However, aluminum is not a biocompatible element, and it can contribute to development of various diseases. Currently, the method of plasma electrolytic oxidation is being actively developed to ensure formation of a biocompatible TiO2-based oxide coating on the surface of titanium implants.
The aim of the study was to establish the residual aluminum content in the surface layer of dental implants after sandblasting and subsequent plasma electrolytic oxidation to justify the effective process sequence in serial production of dental implants.
Materials and Methods. The research was conducted to establish the residual content of aluminum in the surface layer of the NCTi implant subjected to two surface treatment methods: sandblasting and plasma electrolytic oxidation following the sandblasting.
Results. Sandblasting with Al2O3 particles leads to fixation of such particles with Al weight fraction of 2.67±0.79% in the surface layer of the implant. Treatment of a dental implant using plasma electrolytic oxidation helps to reduce the Al weight fraction in the surface layer to 0.33±0.08% and significantly improves the implant corrosion resistance with a decrease in corrosion currents by an order of magnitude.
- Velasco-Ortega E., Alfonso-Rodríguez C.A., Monsalve-Guil L., España-López A., Jiménez-Guerra A., Garzón I., Alaminos M., Gil F.J. Relevant aspects in the surface properties in titanium dental implants for the cellular viability. Mater Sci Eng C Mater Biol Appl 2016; 64: 1–10, https://doi.org/10.1016/j.msec.2016.03.049.
- Mamonov A.M., Chernyshova Yu.V., Safaryan A.I., Karpov V.N., Sarychev S.M. Study on effect of innovative treatment technologies on structure and physicochemical properties of zirconium and titanium alloys for implanted medical products. Titan 2015; 4: 4–11.
- Shin Y., Akao M. Tissue reactions to various percutaneous materials with different surface properties and structures. Artif Organs 1997; 21(9): 995–1001, https://doi.org/10.1111/j.1525-1594.1997.tb00514.x.
- Kim H., Choi S.H., Ryu J.J., Koh S.Y., Park J.H., Lee I.S. The biocompatibility of SLA-treated titanium implants. Biomed Mater 2008; 3(2): 025011, https://doi.org/10.1088/1748-6041/3/2/025011.
- Labis V., Bazikyan E., Zhigalina O., Sizova S., Oleinikov V., Khmelenin D., Dyachkova I., Zolotov D., Buzmakov A., Asadchikov V., Khaidukov S., Kozlov I. Assessment of dental implant surface stability at the nanoscale level. Dent Mater 2022; 38(6): 924–934, https://doi.org/10.1016/j.dental.2022.03.003.
- Aparicio C., Rodriguez D., Gil F.J. Variation of roughness and adhesion strength of deposited apatite layers on titanium dental implants. Mater Sci Eng C Mater Biol Appl 2011; 31(2): 320–324, https://doi.org/10.1016/j.msec.2010.09.018.
- Skvortsova S.V., Orlov A.A., Spektor V.S., Zairov A.V., Lidzhiev A.A. Influence of hardening heat treatment on the hardness of VT6 titanium alloy. Titan 2022; 3–4: 11–18.
- Cochran D.L., Schenk R.K., Lussi A. Higginbottom F.L., Buser D. Bone response to unloaded and loaded titanium implants with sandblasted and acid-etched surface: a histometric study in the canine mandible. J Biomed Mater Res 1998; 40(1): 1–11, https://doi.org/10.1002/(sici)1097-4636 (199804)40:11::aid-jbm13.0.co;2-q.
- Bosshardt D.D., Chappuis V., Buser D. Osseointegration of titanium, titanium alloy and zirconia dental implants: current knowledge and open questions. Periodontol 2000 2017; 73(1): 22–40, https://doi.org/10.1111/prd.12179.
- Darwell B.W., Samman N., Luk W.K., Clark R.K., Tideman H. Contamination of titanium castings by aluminium oxide blasting. J Dent 1995; 23(5): 319–322, https://doi.org/10.1016/0300-5712(94)00003-x.
- Aliofkhazraei M., Macdonald D.D., Matykina E., Parfenov E.V., Egorkin V.S., Curran J.A., Troughton S.C., Sinebryukhov S.L., Gnedenkov S.V., Lampke T., Simchen F., Nabavi H.F. Review of plasma electrolytic oxidation of titanium substrates: mechanism, properties, applications and limitations. Appl Surf Sci Adv 2022; 5: 100121, https://doi.org/10.1016/j.apsadv.2021.100121.
- Aubakirova V., Farrakhov R., Sharipov A., Polyakova V., Parfenova L., Parfenov E. Investigation of biocompatible PEO coating growth on cp-Ti with in situ spectroscopic methods. Materials (Basel) 2022; 15(1): 9, https://doi.org/10.3390/ma15010009.
- Muraev A.A., Murzabekov A.I., Ivanov S.Yu., Tarasov Yu.V., Orlov E.A., Dolgalev A.A. Plasma electrolytic oxidation for dental implant surface treatment. Sovremennye tehnologii v medicine 2023; 15(3): 18, https://doi.org/10.17691/stm2023.15.3.02.
- Parfenov E.V., Farrahov R.G., Mukaeva V.R., Gorbatkov M.V., Melemchuk I.A., Stockiy A.G., Cherneykina Y.V. Automated technological equipment for research into electrolytic plasma processes. Vestnik UGATU 2016; 20(4): 23–31.
- Labis V.V., Bazikyan E.A., Kozlov I.G., Sizova S.V., Khaidukov S.V. Nanosized particles in osseointegration. Bulleten’ Orenburgskogo naucnogo centra UrO RAN 2016; 1: 5.22