Today: Nov 24, 2024
RU / EN
Last update: Oct 30, 2024
Evaluation of the Feasibility of Using Commercial Wound Coatings as a Carrier Matrix for Bacteriophages

Evaluation of the Feasibility of Using Commercial Wound Coatings as a Carrier Matrix for Bacteriophages

Beschastnov V.V., Shirokova I.Yu., Belyanina N.A., Pogodin I.E., Tulupov A.A., Tochilina A.G., Belova I.V., Tyumenkov Yu.O., Kovalishena O.V., Soloveva I.V.
Key words: commercial wound dressings; infected wound; carrier matrix; bacteriophage; antibiotic resistance of Staphylococcus aureus; MRSA.
2024, volume 16, issue 1, page 45.

Full text

html pdf
352
444

The aim of the investigation is to study the possibility of applying commercial wound coatings for treating infected wounds as a carrier matrix for bacteriophages.

Materials and Methods. Twelve varieties of commercial wound coverings based on biopolymers of natural and synthetic origin, a biological preparation Staphylophag produced by scientific-industrial association Microgen (Russia), registration certificate P N001973/01, and the S. aureus 3196 test strain (GenBank JARQZO000000000) isolated from a patient with a burn wound have been used in our work. The ability of commercial biological wound coatings to absorb solutions was examined by immersing them in a physiological solution (pH 7.0‒7.2) followed by weighing. The lytic activity of three bacteriophage series against the test strain was studied using the Appelman method and a spot test. The lytic activity of the bacteriophage in the wound samples was studied within 7 days after its absorption by the wound coatings.

Results. The greatest volume of fluid was absorbed by the LycoSorb, NEOFIX FibroSorb Ag, Biatravm, and Chitocol-S wound coatings. All bacteriophage series have been found to have a high lytic activity against the test strain. It has also been shown that Chitocol-S, Collachit-FA, Algipran, and Aquacel Ag Extra possessed their own inherent antibacterial activity under in vitro conditions stable for 7 days; moreover, the lysis zones of the test strain increased after their saturation with bacteriophage. On day 0, a high level of bacteriophage lytic activity with the maximum size of the test strain lysis zones from 49 to 59 mm have been found to remain in all samples of the wound coverings. The bacteriophage activity persisted for 1 day in the samples of Hydrofilm, Polypran, and NEOFIX FibroCold Ag coatings, up to 4 days in Algipran, Nano-Aseptica, and Biatravm coatings; and for 7 days in the Chitocol-S, Collachit-FA, Opsite Post-Op Visible, NEOFIX FibroSorb Ag, Aquacel Ag Extra, and LycoSorb samples.

Conclusion. Modern commercial wound dressings based on chitosan-collagen complex (Chitocol-S, Collachit-FA), polyurethane (Opsite Post-Op Visible, LycoSorb, NEOFIX FibroSorb Ag), and Hydrofiber (Aquacel Ag Extra) have a sufficient level of bacteriophage solution absorption, provide a stable preservation of the bacteriophage lytic activity under in vitro conditions up to 7 days. Thus, the in vitro studies prove the possibility of their use as a carrier matrix for bacteriophages.

  1. Kern L., Abdeen S.K., Kolodziejczyk A.A., Elinav E. Commensal inter-bacterial interactions shaping the microbiota. Curr Opin Microbiol 2021; 63: 158–171, https://doi.org/10.1016/j.mib.2021.07.011.
  2. Zhong C., Qu C., Wang B., Liang S., Zeng B. Probiotics for preventing and treating small intestinal bacterial overgrowth: a meta-analysis and systematic review of current evidence. J Clin Gastroenterol 2017; 51(4): 300–311, https://doi.org/10.1097/mcg.0000000000000814.
  3. Mei L., Zhang D., Shao H., Hao Y., Zhang T., Zheng W., Ji Y., Ling P., Lu Y., Zhou Q. Injectable and self-healing probiotics-loaded hydrogel for promoting superbacteria-infected wound healing. ACS Appl Mater Interfaces 2022; 14(18): 20538–20550, https://doi.org/10.1021/acsami.1c23713.
  4. Rasporyazhenie Pravitel’stva RF ot 25 sentyabrya 2017 g. No.2045 “O Strategii preduprezhdeniya rasprostraneniya antimikrobnoy rezistentnosti v RF na period do 2030 g.” [Order of the Government of the Russian Federation No.2045 dated 25 September 2017 “On the Strategy for Preventing the Spread of Antimicrobial Resistance in the Russian Federation for the Period until 2030”]. URL: https://www.garant.ru/products/ipo/prime/doc/71677266/.
  5. Aslanov B.I. Bacteriophages are effective antibacterial agents in the context of global antibiotic resistance. Meditsinskiy sovet 2015; 13: 106–110.
  6. Sakharov S.P., Akselrov M.A., Frolova O.I. Analysis of microorganism types composition in children with thermal injury. Medicinskij al’manah 2019; 5–6: 94–97.
  7. Dąbrowska K., Abedon S.T. Pharmacologically aware phage therapy: pharmacodynamic and pharmacokinetic obstacles to phage antibacterial action in animal and human bodies. Microbiol Mol Biol Rev 2019; 83(4): e00012–e00019, https://doi.org/10.1128/mmbr.00012-19.
  8. Abedon S. Phage therapy pharmacology: calculating phage dosing. Adv Appl Microbiol 2011; 77: 1–40, https://doi.org/10.1016/b978-0-12-387044-5.00001-7.
  9. Venturini C., Petrovic Fabijan A., Fajardo Lubian A., Barbirz S., Iredell J. Biological foundations of successful bacteriophage therapy. EMBO Mol Med 2022; 14(7): e12435, https://doi.org/10.15252/emmm.202012435.
  10. Merabishvili M., Monserez R., van Belleghem J., Rose T., Jennes S., De Vos D., Verbeken G., Vaneechoutte M., Pirnay J.P. Stability of bacteriophages in burn wound care products. PLoS One 2017; 12(7): e0182121, https://doi.org/10.1371/journal.pone.0182121.
  11. Malik D.J., Sokolov I.J., Vinner G.K., Mancuso F., Cinquerrui S., Vladisavljevic G.T., Clokie M.R.J., Garton N.J., Stapley A.G.F., Kirpichnikova A. Formulation, stabilisation and encapsulation of bacteriophage for phage therapy. Adv Colloid Interface Sci 2017; 249: 100–133, https://doi.org/10.1016/j.cis.2017.05.014.
  12. Pusateri A.E., McCarthy S.J., Gregory K.W., Harris R.A., Cardenas L., McManus A.T., Goodwin C.W. Jr. Effect of a chitosan-based hemostatic dressing on blood loss and survival in a model of severe venous hemorrhage and hepatic injury in swine. J Trauma 2003; 54(1): 177–182, https://doi.org/10.1097/00005373-200301000-00023.
  13. Rabea E.I., Badawy M.E.T., Stevens C.V., Smagghe G., Steurbaut W. Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules 2003; 4(6): 1457–1465, https://doi.org/10.1021/bm034130m.
  14. Mashel’ V.V., Kondratenko G.G., Protasevich A.I., Neverov P.S. Antimicrobial activity of chitosan nanovoles and its modifications towards infection pathogens. Voennaa medicina 2022; 3: 40–45.
  15. Azad A.K., Sermsintham N., Chandrkrachang S., Stevens W.F. Chitosan membrane as a wound-healing dressing: characterization and clinical application. J Biomed Mater Res B Appl Biomater 2004; 69(2): 216–222, https://doi.org/10.1002/jbm.b.30000.
  16. Di Martino A., Sittinger M., Risbud M.V. Chitosan: a versatile biopolymer for orthopaedic tissue-engineering. Biomaterials 2005; 26(30): 5983–5990, https://doi.org/10.1016/j.biomaterials.2005.03.016.
  17. Aksungur P., Sungur A., Ünal S., İskit A.B., Squier C.A., Senel S. Chitosan delivery systems for the treatment of oral mucositis: in vitro and in vivo studies. J Control Release 2004; 98(2): 269–279, https://doi.org/10.1016/j.jconrel.2004.05.002.
  18. Bolshakov I.N., Yemeyev A.V., Cherdantsev D.V., Kaskayev A.V., Kirichenko A.K., Vlasov A.A., Sapozhnikov A.N. The biodegradable wound coverings on the basis of polysaccharide polymers in the treatment of extensive burn damage (clinical research). Voprosi rekonstruktivnoy i plasticeskoy hirurgii 2011; 3: 56–62.
  19. Beschastnov V.V., Ryabkov M.G., Leontiev A.E., Tulupov A.A., Yudanova T.N., Shirokova I.Yu., Belyanina N.А., Kovalishena O.V. Viability of bacteriophages in the complex hydrogel wound dressings in vitro. Sovremennye tehnologii v medicine 2021; 13(2): 32, https://doi.org/10.17691/stm2021.13.2.03.
  20. Morozov A.M., Sergeev A.N., Sergeev N.A., Dubatolov G.A., Zhukov S.V., Gorodnichev K.I., Muravlyantseva M.M., Sukhareva D.D. Use of modern wound coverings in local treatment of wounds of various ethiology. Sovremennye problemy nauki i obrazovania 2020; 2: 124, https://doi.org/10.17513/spno.29705.
  21. Chang R.Y.K., Morales S., Okamoto Y., Chan H.K. Topical application of bacteriophages for treatment of wound infections. Transl Res 2020; 220: 153–166, https://doi.org/10.1016/j.trsl.2020.03.010.
  22. Pharmacopoeia of the Russian Federation. OFS 1.7.1.0002.15 Bakteriofagi lechebno-profilakticheskie [OFS 1.7.1.0002.15 Therapeutic and prophylactic bacteriophages]. URL: https://pharmacopoeia.ru/ofs-1-7-1-0002-15-bakteriofagi-lechebno-profilakticheskie/.
  23. Aslanov B.I., Zueva L.P., Punchenko O.E., Kaftyreva L.A., Akimkin V.G., Dolgiy A.A., Brusina E.B. Ratsional’noe primenenie bakteriofagov v lechebnoy i protivoepidemicheskoy praktike. Metodicheskie rekomendatsii [Rational use of bacteriophages in therapeutic and anti-epidemic practice. Guidelines]. Moscow; 2022; 32 p.
Beschastnov V.V., Shirokova I.Yu., Belyanina N.A., Pogodin I.E., Tulupov A.A., Tochilina A.G., Belova I.V., Tyumenkov Yu.O., Kovalishena O.V., Soloveva I.V. Evaluation of the Feasibility of Using Commercial Wound Coatings as a Carrier Matrix for Bacteriophages. Sovremennye tehnologii v medicine 2024; 16(1): 45, https://doi.org/10.17691/stm2024.16.1.05


Journal in Databases

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg

SCImago Journal & Country Rank