Today: Dec 23, 2024
RU / EN
Last update: Oct 30, 2024
Development of DNA Microarray for Parallel Detection of Community-Acquired Pneumonia Bacterial Pathogens

Development of DNA Microarray for Parallel Detection of Community-Acquired Pneumonia Bacterial Pathogens

Sakharnov N.A., Filatova E.N., Popkova M.I., Slavin S.L., Utkin O.V.
Key words: DNA microarray; detection of bacterial pathogens; community-acquired pneumonia; S. pneumonia; H. influenzae.
2024, volume 16, issue 2, page 16.

Full text

html pdf
389
329

The aim of the study was to develop an experimental version of a DNA microarray for parallel detection of community-acquired pneumonia bacterial pathogens.

Materials and Methods. We studied the samples of the pharyngeal mucosa smears taken from children aged 1–15 years with X-ray confirmed pneumonia. The selection of DNA probes for specific detection of community-acquired pneumonia pathogens (S. pneumoniae, H. influenzae, M. pneumoniae, C. pneumonia, and L. pneumophila) and development of the microarray design were carried out using the disprose program. The nucleotide sequences of pathogens were obtained from NCBI Nucleotide database. In the research we used CustomArray microarrays (USA). For a pooled sample containing S. pneumoniae and H. influenzae DNA, we performed a sequential selection of the best combinations of hybridization parameters: DNA fragment size, DNA amount, hybridization temperature. The selection criteria were: the percentage of effective probes with a standardized hybridization signal (SHS) ≥3 Z, and the excess of SHS levels of effective specific probes compared to SHS of effective nonspecific probes. We selected the probes to detect of S. pneumoniae and H. influenzae characterized by an effective hybridization signal under optimal conditions. The developed microarray was tested under the selected conditions on clinical samples containing S. pneumoniae or H. influenzae DNA. Using ROC analysis there were established threshold values for the signals of specific probes at optimal sensitivity points and the test specificity, the excess of which was interpreted as the evidence of pathogen presence in a sample.

Results. A microarray design included 142 DNA probes to detect S. pneumoniae, H. influenzae, M. pneumoniae, C. рneumoniae, and L. pneumophila, the probes being synthesized onto slides. Using the example of clinical samples containing S. pneumoniae and/or H. influenza DNA, we selected optimal parameters for DNA hybridization on microarrays, which enabled to identify bacterial pathogens of community-acquired pneumonia with sufficient efficiency, specificity and reproducibility: the amount of hybridized DNA was 2 μg, the DNA fragment size: 300 nt, hybridization temperature: 47°C. There was selected a list of probes for specific detection of S. pneumoniae and H. influenzae characterized by an effective hybridization signal under the identified conditions. We determined the threshold values of standardized probe signals for specific detection of S. pneumoniae (4.5 Z) and H. influenzae (4.9 Z) in clinical samples.

Conclusion. A DNA microarray was developed and synthesized for parallel indication of bacterial pathogens of community-acquired pneumonia. There were selected the optimal parameters for DNA hybridization on a microarray to identify bacterial pathogens — S. pneumoniae and H. influenzae, and determined the threshold values of significant probe signals for their specific detection. The interpretation of the microarray hybridization results corresponds to those obtained by PCR. The microarray can be used to improve laboratory diagnostics of community-acquired pneumonia pathogens.

  1. Chuchalin A.G., Sinopalnikov A.I., Kozlov R.S., Avdeev S.N., Tyurin I.E., Rudnov V.A., Ratchina S.A., Fesenko O.V. Clinical guidelines on diagnosis, treatment and prophylaxis of severe community-acquired pneumonia in adults. Kliniceskaa mikrobiologia i antimikrobnaa himioterapia 2015; 17(2): 84–126.
  2. Ezhlova E.B., Demina Yu.V., Efimov E.I., Brusnigina N.F., Maleev V.V., Tartakovskij I.S., Bilicheko T.N., Shkarin V.V., Kovalishena O.V., Chubukova O.A., Blagonravova A.S. Vnebol’nichnye pnevmonii: klassifikatsiya, patogenez, etiologiya, epidemiologiya, laboratornaya diagnostika na sovremennom etape. Analiticheskiy obzor [Community-acquired pneumonia: classification, pathogenesis, etiology, epidemiology, laboratory diagnostics at the present stage. Analytical review]. Moscow; 2013.
  3. Rozenbaum M.H., Pechivanoglou P., van der Werf T.S., Lo-Ten-Foe J.R., Postma M.J., Hak E. The role of Streptococcus pneumonia in community-acquired pneumonia among adults in Europe: a meta-analysis. Eur J Clin Microbiol Infect Dis 2013; 32(3): 305–316, https://doi.org/10.1007/s10096-012-1778-4.
  4. World Health Organization. The top 10 causes of death. URL: https://www.who.int/news-room/fact-sheets/ detail/the-top-10-causes-of-death.
  5. Federal’naya sluzhba po nadzoru v sfere zashchity prav potrebiteley i blagopoluchiya cheloveka. Gosudarstvennyy doklad “O sostoyanii sanitarno-epidemiologicheskogo blagopoluchiya naseleniya v Rossiyskoy Federatsii v 2022 godu” [Federal Service for Supervision of Consumer Rights Protection and Human Welfare. State report: “On the state of sanitary and epidemiological well-being of the population in the Russian Federation in 2022”]. 2023. URL: https://www.rospotrebnadzor.ru/ documents/details.php?ELEMENT_ID=25076
  6. Zajcev A.A., Sinopal’nikov A.I. Practical recommendations for the management of patients with non-severe community-acquired pneumonia. Russkij medicinskij zhurnal 2020; 4: 19–23.
  7. Zyryanov S.K., Chenkurov M.S., Ivzhits M.A., Batechko Yu.A., Ivanova E.B., Yakunina M.A. Etiology of community-acquired pneumonia and prevalence of comorbidities in elderly patient population. Klinicheskaya mikrobiologiya i antimikrobnaya khimioterapiya 2020; 22(3): 242–248, https://doi.org/10.36488/cmac.2020.3.242-248.
  8. Zaripova A.Z., Valieva R.I., Bayazitova L.T., Tselischeva M.V. Diagnosis of pneumococcal infections of the respiratory tract. Prakticheskaya pul’monologiya 2018; 4: 74–80.
  9. Bonten M.J.M., Huijts S.M., Bolkenbaas M., Webber C., Patterson S., Gault S., van Werkhoven C.H., van Deursen A.M.M., Sanders E.A.M., Verheij T.J.M., Patton M., McDonough A., Moradoghli-Haftvani A., Smith H., Mellelieu T., Pride M.W., Crowther G., Schmoele-Thoma B., Scott D.A., Jansen K.U., Lobatto R., Oosterman B., Visser N., Caspers E., Smorenburg A., Emini E.A., Gruber W.C., Grobbee D.E. Polysaccharide сonjugate vaccine against pneumococcal pneumonia in adults. The N Engl J Med 2015; 372: 1114–1125, https://doi.org/10.1056/nejmoa1408544.
  10. Falkenhorst G., Remschmidt C., Harder T., Wichmann O., Glodny S., Hummers-Pradier E., Ledig T., Bogdan C. Background paper to the updated pneumococcal vaccination recommendation for older adults in Germany. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2016; 59(12): 1623–1657, https://doi.org/10.1007/s00103-016-2466-9.
  11. Haritonov M.A., Zhurkin M.A., Ivanov V.V. Clinical and diagnostic features of community-acquired viral-bacterial pneumonia. Prakticheskaya pul’monologiya 2016; 1: 30–35.
  12. Aftaeva L.N., Melnikov V.L., Kubrina O.Yu., Oreshkina A.A. Features of the course of community-acquired pneumonia Vestnik Penzenskogo gosudarstvennogo universiteta 2019; 25(1): 68–73.
  13. Chubukova O.A., Shkarin V.V. Features of the epidemiology of community-acquired pneumonia with combined etiology. Medicinskij al’manah 2017; 49(4): 149–156.
  14. Zimenkov D.V., Kulagina E.V., Antonova O.V., Zhuravlev V.Y., Gryadunov D.A. Simultaneous drug resistance detection and genotyping of Mycobacterium tuberculosis using a low-density hydrogel microarray. J Antimicrob Chemother 2016; 71(6): 1520–1531, https://doi.org/10.1093/jac/dkw015.
  15. Fesenko E.E., Kireyev D.E., Gryadunov D.A., Mikhailovich V.M., Grebennikova T.V., L’vov D.K., Zasedatelev A.S. Oligonucleotide microchip for subtyping of influenza A virus. Influenza Other Respir Viruses 2007; 1(3): 121–129, https://doi.org/10.1111/j.1750-2659.2007.00018.x.
  16. Shaik A.H., Govindan V., Nagraj G., Ravikumar K.L. Development of a microarray-based method for simultaneous detection and serotyping of Streptococcus pneumoniae from culture negative serum samples. J Appl Biol Biotech 2019; 7(5): 15–24, https://doi.org/10.7324/jabb.2019.70503.
  17. Leski T.A., Lin B., Malanoski A.P., Stenger D.A. Application of resequencing microarrays in microbial detection and characterization. Future Microbiol 2012; 7: 625–637, https://doi.org/10.2217/fmb.12.30.
  18. Tokman H.B., Aslan M., Ortaköylü G., Algingil R.C., Yüksel P., Karakullukçu A., Kalayci F., Saribaş S., Cakan H., Demir T., Kocazeybek B.S. Microorganisms in respiratory tract of patients diagnosed with atypical pneumonia: results of a research based on the use of reverse transcription polymerase chain reaction (RT-PCR) DNA microarray method and enzyme-linked immunosorbent assay. Clin Lab 2014; 60(6): 1027–1034, https://doi.org/10.7754/clin.lab.2013.130731.
  19. Ma X., Li Y., Liang Y., Liu Y., Yu L., Li C., Liu Q., Chen L. Development of a DNA microarray assay for rapid detection of fifteen bacterial pathogens in pneumonia. BMC Microbiol 2020; 20(1): 177, https://doi.org/10.1186/s12866-020-01842-3.
  20. You Y.H., Wang P., Wang Y.H., Wang H.B., Yu D.Z., Hai R., Zhang J.Z. Assessment of comparative genomic hybridization experiment by an in situ synthesized Combi Matrix microarray with Yersinia pestis vaccine strain EV76 DNA. Biomed Environ Sci 2010; 23(5): 384–390, https://doi.org/10.1016/s0895-3988(10)60080-3.
  21. Filatova E.N., Chaikina A.S., Brusnigina N.F., Makhova M.A., Utkin O.V. An algorithm for the selection of probes for specific detection of human disease pathogens using the DNA microarray technology. Sovremennye tehnologii v medicine 2022; 14(1): 6, https://doi.org/10.17691/stm2022.14.1.01.
  22. National Center for Biotechnology Information. Nucleotide. URL: https://www.ncbi.nlm.nih.gov/nucleotide.
  23. Caruthers M.H. Gene synthesis machines: DNA chemistry and its uses. Science 1985; 230(4723): 281–285, https://doi.org/10.1126/science.3863253.
  24. CustomArray Inc. URL: http://www.customarrayinc.com.
  25. R Core Team. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2014. URL: http://www.R-project.org/.
  26. Liu R.H., Dill K., Fuji H.S., McShea A. Integrated microfluidic biochips for DNA microarray analysis. Expert Rev Mol Diagn 2006; 6(2): 253–261, https://doi.org/10.1586/14737159.6.2.253.
  27. Camacho C., Coulouris G., Avagyan V., Ma N., Papadopoulos J., Bealer K., Madden Th.L. BLAST+: architecture and applications. BMC Bioinformatics 2009; 10: 421, https://doi.org/10.1186/1471-2105-10-421.
  28. Raman T., O’Connor T.P., Hackett N.R., Wang W., Harvey B.G., Attiyeh M.A., Dang D.T., Teater M., Crystal R.G. Quality control in microarray assessment of gene expression in human airway epithelium. BMC Genomics 2009; 10: 493, https://doi.org/10.1186/1471-2164-10-493.
  29. Kosikowska U., Biernasiuk A., Rybojad P., Łoś R., Malm A. Haemophilus parainfluenzae as a marker of the upper respiratory tract microbiota changes under the influence of preoperative prophylaxis with or without postoperative treatment in patients with lung cancer. BMC Microbiol 2016; 16: 62, https://doi.org/10.1186/s12866-016-0679-6.
  30. Pickering J., Richmond P.C., Kirkham L.A. Molecular tools for differentiation of non-typeable Haemophilus influenzae from Haemophilus haemolyticus. Front Microbiol 2014; 5: 664, https://doi.org/10.3389/fmicb.2014.00664.
  31. Lin B., Wang Z., Vora G.J., Thornton J.A., Schnur J.M., Thach D.C., Blaney K.M., Ligler A.G., Malanoski A.P., Santiago J., Walter E.A., Agan B.K., Metzgar D., Seto D., Daum L.T., Kruzelock R., Rowley R.K., Hanson E.H., Tibbetts C., Stenger D.A. Broad spectrum respiratory tract pathogen identification using resequencing DNA microarrays. Genome Res 2006; 16(4): 527–535, https://doi.org/10.1101/gr.4337206.
  32. Spuesens E.B., Fraaij P.L., Visser E.G., Hoogenboezem T., Hop W.C., van Adrichem L.N., Weber F., Moll H.A., Broekman B., Berger M.Y., van Rijsoort-Vos T., van Belkum A., Schutten M., Pas S.D., Osterhaus A.D., Hartwig N.G., Vink C., van Rossum A.M. Carriage of Mycoplasma pneumoniae in the upper respiratory tract of symptomatic and asymptomatic children: an observational study. PLoS Med 2013; 10(5): e1001444, https://doi.org/10.1371/journal.pmed.1001444.
  33. Schmidt S.M., Müller C.E., Mahner B., Wiersbitzky S.K. Prevalence, rate of persistence and respiratory tract symptoms of Chlamydia pneumoniae infection in 1211 kindergarten and school age children. Pediatr Infect Dis J 2002; 21(8): 758–762, https://doi.org/10.1097/00006454-200208000-00012.
  34. Miyashita N., Niki Y., Nakajima M., Fukano H., Matsushima T. Prevalence of asymptomatic infection with Chlamydia pneumoniae in subjectively healthy adults. Chest 2001; 119(5): 1416–1419, https://doi.org/10.1378/chest.119.5.1416.
  35. Ramirez J.A., Ahkee S., Tolentino A., Miller R.D., Summersgill J.T. Diagnosis of Legionella pneumophila, Mycoplasma pneumoniae, or Chlamydia pneumoniae lower respiratory infection using the polymerase chain reaction on a single throat swab specimen. Diagn Microbiol Infect Dis 1996; 24(1): 7–14, https://doi.org/10.1016/0732-8893(95)00254-5.
  36. Ghindilis A.L., Smith M.W., Schwarzkopf K.R., Roth K.M., Peyvan K., Munro S.B., Lodes M.J., Stöver A.G., Bernards K., Dill K., McShea A. CombiMatrix oligonucleotide arrays: genotyping and gene expression assays employing electrochemical detection. Biosens Bioelectron 2007; 22(9–10): 1853–1860, https://doi.org/10.1016/j.bios.2006.06.024.
Sakharnov N.A., Filatova E.N., Popkova M.I., Slavin S.L., Utkin O.V. Development of DNA Microarray for Parallel Detection of Community-Acquired Pneumonia Bacterial Pathogens. Sovremennye tehnologii v medicine 2024; 16(2): 16, https://doi.org/10.17691/stm2024.16.2.02


Journal in Databases

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg

SCImago Journal & Country Rank