Today: Jan 23, 2025
RU / EN
Last update: Dec 27, 2024
Anti-Adhesive Properties of Epoxy-Treated Xenopericardium Modified with Polyvinyl Alcohol: <i>in vitro</i> Study of Leukocyte Adhesion in the Pulsatile Flow Model

Anti-Adhesive Properties of Epoxy-Treated Xenopericardium Modified with Polyvinyl Alcohol: in vitro Study of Leukocyte Adhesion in the Pulsatile Flow Model

Ovcharenko Е.А., Glushkova T.V., Shishkova D.K., Rezvova M.A., Velikanova E.A., Klyshnikov K.Yu., Akentyeva T.N., Kostyunin A.E.
Key words: bioprosthetic heart valves; polyvinyl alcohol; immune rejection; leukocytes; adhesion.
2024, volume 16, issue 2, page 40.

Full text

html pdf
501
406

The aim of the study is to assess protective capabilities of the polymer coating made of polyvinyl alcohol to prevent leukocyte adhesion to epoxy-treated bovine pericardium, which is used in production of bioprosthetic heart valves.

Materials and Methods. Fragments of unmodified (control) and modified with polyvinyl alcohol epoxy-treated bovine pericardium were incubated in the dedicated chambers connected to a pulsatile flow system (Ibidi GmbH, Germany). During 48 h incubation was conducted in whole donor plasma containing 3·106 of mononuclear fraction cells. To simulate plasma flow, the shear stress on the inflow and outflow sides of of bioprosthetic heart valve in the aortic position was set to 50 and 20 dynes/cm2, respectively. After the experiment was completed, the surface of the studied samples was subjected to scanning electron microscopy and immunofluorescence using antibodies to the pan-leukocyte marker CD45.

Results. Adhesion of leukocytes (CD45+) was seen for both the serous (outflow side) and fibrous (inflow side) surfaces of the control epoxy-treated bovine pericardium, whereas both surfaces of the material modified with polyvinyl alcohol were clear of immune cells. Scanning electron microscopy confirmed the adhesion of leukocytes to intact biological tissue: the cells on the surface of the control xenopericardium were of an irregular shape and formed numerous pseudopodia.

Conclusion. The suggested modification of epoxy-treated bovine pericardium with polyvinyl alcohol prevents the adhesion of immune cells to the implant surface and can potentially protect bioprosthetic heart valves from immune rejection.

  1. Bax J.J., Delgado V. Bioprosthetic heart valves, thrombosis, anticoagulation, and imaging surveillance. JACC Cardiovasc Interv 2017; 10(4): 388–390, https://doi.org/10.1016/j.jcin.2017.01.017.
  2. Head S.J., Çelik M., Kappetein A.P. Mechanical versus bioprosthetic aortic valve replacement. Eur Heart J 2017; 38(28): 2183–2191, https://doi.org/10.1093/eurheartj/ehx141.
  3. Pibarot P., Dumesnil J.G. Prosthetic heart valves: selection of the optimal prosthesis and long-term management. Circulation 2009; 119(7): 1034–1048, https://doi.org/10.1161/circulationaha.108.778886.
  4. Otto C.M., Nishimura R.A., Bonow R.O., Carabello B.A., Erwin J.P. III, Gentile F., Jneid H., Krieger E.V., Mack M., McLeod C., O’Gara P.T., Rigolin V.H., Sundt T.M. III, Thompson A., Toly C. 2020 ACC/AHA guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Joint Committee on clinical practice guidelines. Circulation 2021; 143(5): e72–e227, https://doi.org/10.1161/cir.0000000000000923.
  5. Kostyunin A.E., Yuzhalin A.E., Rezvova M.A., Ovcharenko E.A., Glushkova T.V., Kutikhin A.G. Degeneration of bioprosthetic heart valves: update 2020. J Am Heart Assoc 2020; 9(19): e018506, https://doi.org/10.1161/jaha.120.018506.
  6. Nair V., Law K.B., Li A.Y., Phillips K.R., David T.E., Butany J. Characterizing the inflammatory reaction in explanted Medtronic Freestyle stentless porcine aortic bioprosthesis over a 6-year period. Cardiovasc Pathol 2012; 21(3): 158–168, https://doi.org/10.1016/j.carpath.2011.05.003.
  7. Sakaue T., Nakaoka H., Shikata F., Aono J., Kurata M., Uetani T., Hamaguchi M., Kojima A., Uchita S., Yasugi T., Higashi H., Suzuki J., Ikeda S., Higaki J., Higashiyama S., Izutani H. Biochemical and histological evidence of deteriorated bioprosthetic valve leaflets: the accumulation of fibrinogen and plasminogen. Biol Open 2018; 7(8): bio034009, https://doi.org/10.1242/bio.034009.
  8. Shetty R., Pibarot P., Audet A., Janvier R., Dagenais F., Perron J., Couture C., Voisine P., Després J.P., Mathieu P. Lipid-mediated inflammation and degeneration of bioprosthetic heart valves. Eur J Clin Invest 2009; 39(6): 471–480, https://doi.org/10.1111/j.1365-2362.2009.02132.x.
  9. Lu F., Wu H., Bai Y., Gong D., Xia C., Li Q., Lu F., Xu Z. Evidence of osteogenic regulation in calcific porcine aortic valves. Heart Surg Forum 2018; 21(5): E375–E381, https://doi.org/10.1532/hsf.2033.
  10. Ding K., Zheng C., Huang X., Zhang S., Li M., Lei Y., Wang Y. A PEGylation method of fabricating bioprosthetic heart valves based on glutaraldehyde and 2-amino-4-pentenoic acid co-crosslinking with improved antithrombogenicity and cytocompatibility. Acta Biomater 2022; 144: 279–291, https://doi.org/10.1016/j.actbio.2022.03.026.
  11. Kostyunin A.E., Rezvova M.A., Glushkova T.V., Shishkova D.K., Kutikhin A.G., Akentieva T.N., Ovcharenko E.A. Polyvinyl alcohol improves resistance of epoxy-treated bovine pericardium to calcification in vitro. Transplantologiya 2023; 15(1): 34–45, https://doi.org/10.23873/2074-0506-2023-15-1-34-45.
  12. Betterman K.L., Sutton D.L., Secker G.A., Kazenwadel J., Oszmiana A., Lim L., Miura N., Sorokin L., Hogan B.M., Kahn M.L., McNeill H., Harvey N.L. Atypical cadherin FAT4 orchestrates lymphatic endothelial cell polarity in response to flow. J Clin Invest 2020; 130(6): 3315–3328, https://doi.org/10.1172/jci99027.
  13. Bosseboeuf E., Chikh A., Chaker A.B., Mitchell T.P., Vignaraja D., Rajendrakumar R., Khambata R.S., Nightingale T.D., Mason J.C., Randi A.M., Ahluwalia A., Raimondi C. Neuropilin-1 interacts with VE-cadherin and TGFBR2 to stabilize adherens junctions and prevent activation of endothelium under flow. Sci Signal 2023; 16(786): eabo4863, https://doi.org/10.1126/scisignal.abo4863.
  14. Sadeghpour F., Fatouraee N., Navidbakhsh M. Haemodynamic of blood flow through stenotic aortic valve. J Med Eng Technol 2017; 41(2): 108–114, https://doi.org/10.1080/03091902.2016.1226439.
  15. Sun L., Rajamannan N.M., Sucosky P. Defining the role of fluid shear stress in the expression of early signaling markers for calcific aortic valve disease. PLoS One 2013; 8(12): e84433, https://doi.org/10.1371/journal.pone.0084433.
Ovcharenko Е.А., Glushkova T.V., Shishkova D.K., Rezvova M.A., Velikanova E.A., Klyshnikov K.Yu., Akentyeva T.N., Kostyunin A.E. Anti-Adhesive Properties of Epoxy-Treated Xenopericardium Modified with Polyvinyl Alcohol: in vitro Study of Leukocyte Adhesion in the Pulsatile Flow Model. Sovremennye tehnologii v medicine 2024; 16(2): 40, https://doi.org/10.17691/stm2024.16.2.04


Journal in Databases

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg

SCImago Journal & Country Rank