Today: Dec 22, 2024
RU / EN
Last update: Oct 30, 2024
Nanoparticles for Creating a Strategy to Stimulate Liver Regeneration

Nanoparticles for Creating a Strategy to Stimulate Liver Regeneration

Rodimova S.A., Kozlov D.S., Krylov D.P., Mikhailova L.V., Kozlova V.A., Gavrina A.I., Mozherov А.М., Elagin V.V., Kuznetsova D.S.
Key words: nanoparticles; biodistribution; FLIM; liver slices; liver cell culture; liver regeneration.
2024, volume 16, issue 3, page 31.

Full text

html pdf
239
319

Presently, there is a need in the developing new approaches to stimulate liver regeneration, which would make its recovery more effective after resection. Application of nanoparticles, loaded with small bioactive molecules, with their targeted delivery into the liver is a promising approach.

The aim of the investigation is to study the interaction of nanoparticles with various types of hepatic cells on the models of liver slices and primary hepatic cell cultures using the methods of multiphoton microscopy with fluorescence lifetime imaging.

Materials and Methods. Nanoparticles have been synthetized from polylactide (PLA), gold (Au), and silicon (SiO2), and characterized using scanning and transmission electron microscopy. These types of particles were labeled with a fluorescent Cy5 dye for their visualization. Liver slices and a primary hepatocyte culture were used as models for biological testing of nanoparticles. Biodistribution of the nanoparticles in the tissue and cells, their cytotoxicity, and the effect on the cell metabolism were assessed using optical bioimaging methods.

Results. The silicon nanoparticles are accumulated mainly by macrophages, which generate reactive oxygen species in a large amount and impair the native metabolic state of hepatocytes. The gold nanoparticles accumulate in all types of the liver cells but possess a marked toxic effect, which is indicated by the appearance of necrotic and apoptotic cells and a sharp change in the hepatocyte metabolic state. The polylactide nanoparticles accumulate most effectively in the liver cells, preferably in hepatocytes, do not change their native metabolic state, making this type of nanoparticles most promising for creating the bioactive molecule delivery systems to stimulate liver regeneration.

  1. Quek J., Chan K.E., Wong Z.Y., Tan C., Tan B., Lim W.H., Tan D.J.H., Tang A.S.P., Tay P., Xiao J., Yong J.N., Zeng R.W., Chew N.W.S., Nah B., Kulkarni A., Siddiqui M.S., Dan Y.Y., Wong V.W., Sanyal A.J., Noureddin M., Muthiah M., Ng C.H. Global prevalence of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis in the overweight and obese population: a systematic review and meta-analysis. Lancet Gastroenterol Hepatol 2023; 8(1): 20–30, https://doi.org/10.1016/s2468-1253(22)00317-x.
  2. Yi P.S., Zhang M., Xu M.Q. Role of microRNA in liver regeneration. Hepatobiliary Pancreat Dis Int 2016; 15(2): 141–146, https://doi.org/10.1016/s1499-3872(15)60036-4.
  3. Zhao Z., Lin C.Y., Cheng K. siRNA- and miRNA-based therapeutics for liver fibrosis. Transl Res 2019; 214: 17–29, https://doi.org/10.1016/j.trsl.2019.07.007.
  4. Wu P., Luo X., Wu H., Zhang Q., Dai Y., Sun M. Efficient and targeted chemo-gene delivery with self-assembled fluoro-nanoparticles for liver fibrosis therapy and recurrence. Biomaterials 2020; 261: 120311, https://doi.org/10.1016/j.biomaterials.2020.120311.
  5. Lee S.W.L., Paoletti C., Campisi M., Osaki T., Adriani G., Kamm R.D., Mattu C., Chiono V. MicroRNA delivery through nanoparticles. J Control Release 2019; 313: 80–95, https://doi.org/10.1016/j.jconrel.2019.10.007.
  6. Taghizadeh S., Alimardani V., Roudbali P.L., Ghasemi Y., Kaviani E. Gold nanoparticles application in liver cancer. Photodiagnosis Photodyn Ther 2019; 25: 389–400, https://doi.org/10.1016/j.pdpdt.2019.01.027.
  7. de Carvalho T.G., Garcia V.B., de Araújo A.A., da Silva Gasparotto L.H., Silva H., Guerra G.C.B., de Castro Miguel E., de Carvalho Leitão R.F., da Silva Costa D.V., Cruz L.J., Chan A.B., de Araújo Júnior R.F. Spherical neutral gold nanoparticles improve anti-inflammatory response, oxidative stress and fibrosis in alcohol-methamphetamine-induced liver injury in rats. Int J Pharm 2018; 548(1): 1–14, https://doi.org/10.1016/j.ijpharm.2018.06.008.
  8. Hyun J., Wang S., Kim J., Rao K.M., Park S.Y., Chung I., Ha C.S., Kim S.W., Yun Y.H., Jung Y. MicroRNA-378 limits activation of hepatic stellate cells and liver fibrosis by suppressing Gli3 expression. Nat Commun 2016; 7(1): 10993, https://doi.org/10.1038/ncomms10993.
  9. Kumar V., Mahato R.I. Delivery and targeting of miRNAs for treating liver fibrosis. Pharm Res 2015; 32(2): 341–361, https://doi.org/10.1007/s11095-014-1497-x.
  10. Caldez M.J., Van Hul N., Koh H.W.L., Teo X.Q., Fan J.J., Tan P.Y., Dewhurst M.R., Too P.G., Talib S.Z.A., Chiang B.E., Stünkel W., Yu H., Lee P., Fuhrer T., Choi H., Björklund M., Kaldis P. Metabolic remodeling during liver regeneration. Dev Cell 2018; 47(4): 425–438.e5, https://doi.org/10.1016/j.devcel.2018.09.020.
  11. Stöber W., Fink A., Bohn E. Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 1968; 26(1): 62–69, https://doi.org/10.1016/0021-9797(68)90272-5.
  12. Chorny M., Fishbein I., Danenberg H.D., Golomb G. Lipophilic drug loaded nanospheres prepared by nanoprecipitation: effect of formulation variables on size, drug recovery and release kinetics. J Control Release 2002; 83(3): 389–400, https://doi.org/10.1016/S0168-3659(02)00211-0.
  13. Bartucci R., Åberg C., Melgert B.N., Boersma Y.L., Olinga P., Salvati A. Time-resolved quantification of nanoparticle uptake, distribution, and impact in precision-cut liver slices. Small 2020;16(21): 1906523, https://doi.org/10.1002/smll.201906523.
  14. Kegel V., Deharde D., Pfeiffer E., Zeilinger K., Seehofer D., Damm G. Protocol for isolation of primary human hepatocytes and corresponding major populations of non-parenchymal liver cells. J Vis Exp 2016; 109: e53069, https://doi.org/10.3791/53069.
  15. Zyuzin M.V., Antuganov D., Tarakanchikova Y.V., Karpov T.E., Mashel T.V., Gerasimova E.N., Peltek O.O., Alexandre N., Bruyere S., Kondratenko Y.A., Muslimov A.R., Timin A.S. Radiolabeling strategies of micron- and submicron-sized core-shell carriers for in vivo studies. ACS Appl Mater Interfaces 2020; 12(28): 31137–31147, https://doi.org/10.1021/acsami.0c06996.
  16. Zhang Y.N., Poon W., Tavares A.J., McGilvray I.D., Chan W.C.W. Nanoparticle-liver interactions: cellular uptake and hepatobiliary elimination. J Control Release 2016; 240: 332–348, https://doi.org/10.1016/j.jconrel.2016.01.020.
  17. Rodimova S., Mozherov A., Elagin V., Karabut M., Shchechkin I., Kozlov D., Krylov D., Gavrina A., Bobrov N., Zagainov V., Zagaynova E., Kuznetsova D. Label-free imaging techniques to evaluate metabolic changes caused by toxic liver injury in PCLS. Int J Mol Sci 2023; 24(11): 9195, https://doi.org/10.3390/ijms24119195.
  18. Chen X., Zhao Y., Wang F., Bei Y., Xiao J., Yang C. MicroRNAs in liver regeneration. Cell Physiol Biochem 2015; 37(2): 615–628, https://doi.org/10.1159/000430381.
  19. Forbes S.J., Newsome P.N. Liver regeneration — mechanisms and models to clinical application. Nat Rev Gastroenterol Hepatol 2016; 13(8): 473–485, https://doi.org/10.1038/nrgastro.2016.97.
  20. Liu J., Chen Q., Feng L., Liu Z. Nanomedicine for tumor microenvironment modulation and cancer treatment enhancement. Nano Today 2018; 21: 55–73, https://doi.org/10.1016/j.nantod.2018.06.008.
  21. Shahbazi M.A., Fernández T.D., Mäkilä E.M., Le Guével X., Mayorga C., Kaasalainen M.H., Salonen J.J., Hirvonen J.T., Santos H.A. Surface chemistry dependent immunostimulative potential of porous silicon nanoplatforms. Biomaterials 2014; 35(33): 9224–9235, https://doi.org/10.1016/j.biomaterials.2014.07.050.
  22. Shrestha N., Araujo F., Shahbazi M.A., Mäkilä E., Gomes M.J., Herranz-Blanco B., Lindgren R., Granroth S., Kukk E., Salonen J., Hirvonen J., Santos H.A. Thiolation and cell-penetrating peptide surface functionalization of porous silicon nanoparticles for oral delivery of insulin. Adv Funct Mater 2016; 26(20): 3405–3416, https://doi.org/10.1002/adfm.201505252.
  23. Ferreira M.P., Ranjan S., Correia A.M., Mäkilä E.M., Kinnunen S.M., Zhang H., Shahbazi M.A., Almeida P.V., Salonen J.J., Ruskoaho H.J., Airaksinen A.J., Hirvonen J.T., Santos H.A. In vitro and in vivo assessment of heart-homing porous silicon nanoparticles. Biomaterials 2016; 94: 93–104, https://doi.org/10.1016/j.biomaterials.2016.03.046.
  24. Liu Z., Li Y., Li W., Xiao C., Liu D., Dong C., Zhang M., Mäkilä E., Kemell M., Salonen J., Hirvonen J.T., Zhang H., Zhou D., Deng X., Santos H.A. Multifunctional nanohybrid based on porous silicon nanoparticles, gold nanoparticles, and acetalated dextran for liver regeneration and acute liver failure theranostics. Adv Mater 2018; 30(24): e1703393, https://doi.org/10.1002/adma.201703393.
  25. Peng F., Tee J.K., Setyawati M.I., Ding X., Yeo H.L.A., Tan Y.L., Leong D.T., Ho H.K. Inorganic nanomaterials as highly efficient inhibitors of cellular hepatic fibrosis. ACS Appl Mater Interfaces 2018; 10(38): 31938–31946, https://doi.org/10.1021/acsami.8b10527.
  26. Boey A., Ho H.K. All roads lead to the liver: metal nanoparticles and their implications for liver health. Small 2020; 16(21): e2000153, https://doi.org/10.1002/smll.202000153.
  27. Siddique S., Chow J.C.L. Gold nanoparticles for drug delivery and cancer therapy. Appl Sci 2020; 10(11): 3824, https://doi.org/10.3390/app10113824.
  28. Amina S.J., Guo B. A review on the synthesis and functionalization of gold nanoparticles as a drug delivery vehicle. Int J Nanomedicine 2020; 15: 9823–9857, https://doi.org/10.2147/ijn.s279094.
  29. Khan H.A., Abdelhalim M.A., Alhomida A.S., Al-Ayed M.S. Effects of naked gold nanoparticles on proinflammatory cytokines mRNA expression in rat liver and kidney. Biomed Res Int 2013; 2013: 590730, https://doi.org/10.1155/2013/590730.
  30. Gao W., Xu K., Ji L., Tang B. Effect of gold nanoparticles on glutathione depletion-induced hydrogen peroxide generation and apoptosis in HL7702 cells. Toxicol Lett 2011; 205(1): 86–95, https://doi.org/10.1016/j.toxlet.2011.05.1018.
  31. Sani A., Cao C., Cui D. Toxicity of gold nanoparticles (AuNPs): a review. Biochem Biophys Rep 2021; 26: 100991, https://doi.org/10.1016/j.bbrep.2021.100991.
  32. Devulapally R., Foygel K., Sekar T.V., Willmann J.K., Paulmurugan R. Gemcitabine and antisense-microRNA co-encapsulated PLGA–PEG polymer nanoparticles for hepatocellular carcinoma therapy. ACS Appl Mater Interfaces 2016; 8(49): 33412–33422, https://doi.org/10.1021/acsami.6b08153.
  33. Poilil Surendran S., George Thomas R., Moon M.J., Jeong Y.Y. Nanoparticles for the treatment of liver fibrosis. Int J Nanomedicine 2017; 12: 6997–7006, https://doi.org/10.2147/ijn.s145951.
  34. El-Naggar M.E., Al-Joufi F., Anwar M., Attia M.F., El-Bana M.A. Curcumin-loaded PLA-PEG copolymer nanoparticles for treatment of liver inflammation in streptozotocin-induced diabetic rats. Colloids Surf B Biointerfaces 2019; 177: 389–398, https://doi.org/10.1016/j.colsurfb.2019.02.024.
  35. Wang H., Thorling C.A., Liang X., Bridle K.R., Grice J.E., Zhu Y., Crawford D.H.G., Xu Z.P., Liu X., Roberts M.S. Diagnostic imaging and therapeutic application of nanoparticles targeting the liver. J Mater Chem B 2015; 3(6): 939–958, https://doi.org/10.1039/c4tb01611d.
  36. Cornu R., Béduneau A., Martin H. Influence of nanoparticles on liver tissue and hepatic functions: a review. Toxicology 2020; 430: 152344, https://doi.org/10.1016/j.tox.2019.152344.
Rodimova S.A., Kozlov D.S., Krylov D.P., Mikhailova L.V., Kozlova V.A., Gavrina A.I., Mozherov А.М., Elagin V.V., Kuznetsova D.S. Nanoparticles for Creating a Strategy to Stimulate Liver Regeneration. Sovremennye tehnologii v medicine 2024; 16(3): 31, https://doi.org/10.17691/stm2024.16.3.04


Journal in Databases

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg

SCImago Journal & Country Rank