Today: Dec 22, 2024
RU / EN
Last update: Oct 30, 2024
Capabilities of Cephalometric Methods to Study X-rays in Three-Dimensional Space (Review)

Capabilities of Cephalometric Methods to Study X-rays in Three-Dimensional Space (Review)

Ayupova I.О., Makhota A.Yu., Kolsanov A.V., Popov N.V., Davidyuk M.A., Nekrasov I.A., Romanova P.A., Khamadeeva A.M.
Key words: three-dimensional cephalometry; three-dimensional cephalometric analysis; orthodontics; asymmetric MFA deformities; maxillofacial anomalies; 3D cephalometry; CBCT.
2024, volume 16, issue 3, page 62.

Full text

html pdf
445
420

To assess the patient’s maxillofacial area (MFA) morphology of the patient, an orthodontist needs to measure on X-ray images in various views, photos of the face, gypsum or digital models of the jaws. A variety of techniques makes diagnosis time-consuming and requires a lot of equipment; therefore, the issue of searching for a technology for multifunctional craniometric analysis is relevant. Increasingly, the data on diagnostics based on three-dimensional X-ray images are found in the literature, it being the most informative method of examining patients.

The aim of the study was a systematic review of modern methods of three-dimensional cephalometric analysis, and the assessment of their efficiency.

The scientific papers describing modern diagnostic methods of MFA in dental practice were searched in databases PubMed, Web of Science, eLIBRARY.RU, as well as in a searching system Google Scholar by the following key words: three-dimensional cephalometry, three-dimensional cephalometric analysis, orthodontics, asymmetric deformities, maxillofacial anomalies, 3D cephalometry, CBCT.

The literature analysis showed many methods of cephalometric analysis described as three-dimensional to use two-dimensional reformates for measurements. True three-dimensional methods are not applicable for practical purposes due to the fragmentary nature of the studies. There is the disunity in choosing landmarks and supporting planes that makes the diagnosis difficult and costly. The major issue is the lack of uniform standards for tree-dimensional measurements of anatomical structures of the skull, and the data revealed can be compared to them. In this regard, the use of artificial neuron networks and in-depth study technologies to process three-dimensional images and determining standard indicators appear to be promising.

  1. Kaya K.S., Türk B., Cankaya M., Seyhun N., Coşkun B.U. Assessment of facial analysis measurements by golden proportion. Braz J Otorhinolaryngol 2019; 85(4): 494–501, https://doi.org/10.1016/j.bjorl.2018.07.009.
  2. Popova E., Petrova A., Zhilyaeva O. Anthropometric indicators of diagnostic models in 12–15 aged children with crowdness of the teeth. Internauka 2017; 30: 74–78.
  3. Paiva J.B., Attizzani M.F., Miasiro Júnior H., Rino Neto J. Facial harmony in orthodontic diagnosis and planning. Braz Oral Res 2010; 24(1): 52–57, https://doi.org/10.1590/s1806-83242010000100009.
  4. Uspenskaya O.A., Plishkina A.A., Zhdanova M.L., Goryacheva I.P., Bogomolova Yu.B. The role of digital dental photography in the practice of dentistry. Mediko-farmacevticeskij zurnal “Pul’s” 2019; 21(9): 5–11.
  5. Nishi S.E., Basri R., Alam M.K. Uses of electromyography in dentistry: an overview with meta-analysis. Eur J Dent 2016; 10(3): 419, https://doi.org/10.4103/1305-7456.184156.
  6. Talmaceanu D., Bolog N., Leucuta D., Tig I.A., Buduru S. Diagnostic use of computerized axiography in TMJ disc displacements. Exp Ther Med 2022; 23(3): 213, https://doi.org/10.3892/etm.2022.11137.
  7. Aşantoğrol F., Dursun H., Canger E.M., Bayram F. Clinical and radiological evaluation of dentomaxillofacial involvement in type I Gaucher disease. Oral Radiol 2022; 38(2): 210–223, https://doi.org/10.1007/s11282-021-00546-2.
  8. Sadr S., Mohammad-Rahimi H., Ghorbanimehr M.S., Rokhshad R., Abbasi Z., Soltani P., Moaddabi A., Shahab S., Rohban M.H. Deep learning for tooth identification and enumeration in panoramic radiographs. Dent Res J (Isfahan) 2023; 20: 116.
  9. Arkhipov A.V., Loginova E.A., Arkhipov V.D. Modern methods of diagnosis in orthodontics. Nauka i innovacii v medicine 2016; 1(2): 10–13, https://doi.org/10.35693/2500-1388-2016-0-2-10-13.
  10. Kukharev G.A., Kaziyeva N. Application of digital facial anthropometry. Naucno-tehniceskij vestnik informacionnyh tehnologij, mehaniki i optiki 2019; 19(2): 255–269, https://doi.org/10.17586/2226-1494-2019-19-2-255-270.
  11. Shkarin V.V., Dmitrienko T.D., Kochkonyan T.S., Dmitrienko D.S., Yagupova V.T. Analysis of classical and modern methods of biometric examination of dental arches in the period of permanent teeth (literature review). Vestnik Volgogradskogo gosudarstvennogo medicinskogo universiteta 2022; 19(1): 9–16.
  12. Aragón M.L., Pontes L.F., Bichara L.M., Flores-Mir C., Normando D. Validity and reliability of intraoral scanners compared to conventional gypsum models measurements: a systematic review. Eur J Orthod 2016; 38(4): 429–434, https://doi.org/10.1093/ejo/cjw033.
  13. Abu A., Ngo C.G., Abu-Hassan N.I.A., Othman S.A. Automated craniofacial landmarks detection on 3D image using geometry characteristics information. BMC Bioinformatics 2019; 19(Suppl 13): 548, https://doi.org/10.1186/s12859-018-2548-9.
  14. Albarakati S.F., Kula K.S., Ghoneima A.A. The reliability and reproducibility of cephalometric measurements: a comparison of conventional and digital methods. Dentomaxillofac Radiol 2012; 41(1): 11–17, https://doi.org/10.1259/dmfr/37010910.
  15. Jung P.K., Lee G.C., Moon C.H. Comparison of cone-beam computed tomography cephalometric measurements using a midsagittal projection and conventional two-dimensional cephalometric measurements. Korean J Orthod 2015; 45(6): 282–288, https://doi.org/10.4041/kjod.2015.45.6.282.
  16. Oenning A.C., Jacobs R., Pauwels R., Stratis A., Hedesiu M., Salmon B.; DIMITRA Research Group. Cone-beam CT in paediatric dentistry: DIMITRA project position statement. Pediatr Radio 2018; 48(3): 308–316, https://doi.org/10.1007/s00247-017-4012-9.
  17. Kim M.J., Liu Y. Using three-dimensional craniofacial images to construct horizontal reference plane. Beijing Da Xue Xue Bao Yi Xue Ban 2019; 51(5): 937–943, https://doi.org/10.19723/j.issn.1671-167x.2019.05.024.
  18. Wang R.H., Ho C.T., Lin H.H., Lo L.J. Three-dimensional cephalometry for orthognathic planning: normative data and analyses. J Formos Med Assoc 2020; 119(1 Pt 2): 191–203, https://doi.org/10.1016/j.jfma.2019.04.001.
  19. van Vlijmen O.J.C., Maal T., Bergé S.J., Bronkhorst E.M., Katsaros C., Kuijpers-Jagtman A.M. A comparison between 2D and 3D cephalometry on CBCT scans of human skulls. Int J Oral Maxillofac Surg 2010; 39(2): 156–160, https://doi.org/10.1016/j.ijom.2009.11.017.
  20. Kim J., Kim I., Kim Y.J., Kim M., Cho J.H., Hong M., Kang K.H., Lim S.H., Kim S.J., Kim Y.H., Kim N., Sung S.J., Baek S.H. Accuracy of automated identification of lateral cephalometric landmarks using cascade convolutional neural networks on lateral cephalograms from nationwide multi-centres. Orthod Craniofac Res 2021; 24(Suppl 2): 59–67, https://doi.org/10.1111/ocr.12493.
  21. Bras P., Morawe C., Labouré S., Perrin F., Vivo A., Barrett R. X-ray mirrors with sub-nanometre figure errors obtained by differential deposition of thin WSi2 films. J Synchrotron Radiat 2023; 30(Pt 4): 708–716, https://doi.org/10.1107/s1600577523003697.
  22. Kolsanov A.V., Popov N.V., Ayupova I.O., Makhota A.Yu., Davidyuk M.A. A method for assessing the quality of telerentgenological images. Patent RU 2023100460; 2023.
  23. Dillenseger J.P., Matern J.F., Gros C.I., Bornert F., Goetz C., Le Minor J.M., Constantinesco A., Choquet P. MSCT versus CBCT: evaluation of high-resolution acquisition modes for dento-maxillary and skull-base imaging. Eur Radiol 2015; 25(2): 505–515, https://doi.org/10.1007/s00330-014-3439-8.
  24. Jacobs R. Dental cone beam CT and its justified use in oral health care. JBR-BTR 2011; 94(5): 254–265, https://doi.org/10.5334/jbr-btr.662.
  25. Chun J.H., de Castro A.C.R., Oh S., Kim K.H., Choi S.H., Nojima L.I., Nojima M.D.C.G., Lee K.J. Skeletal and alveolar changes in conventional rapid palatal expansion (RPE) and miniscrew-assisted RPE (MARPE): a prospective randomized clinical trial using low-dose CBCT. BMC Oral Health 2022; 22(1): 114, https://doi.org/10.1186/s12903-022-02138-w.
  26. Thawri S.R., Paul P., Reche A., Rathi H.P. 3D technology used for precision in orthodontics. Cureus 2023; 15(10): e47170, https://doi.org/10.7759/cureus.47170.
  27. Francisco I., Ribeiro M.P., Marques F., Travassos R., Nunes C., Pereira F., Caramelo F., Paula A.B., Vale F. Application of three-dimensional digital technology in orthodontics: the state of the art. Biomimetics (Basel) 2022; 7(1): 23, https://doi.org/10.3390/biomimetics7010023.
  28. Kapila S.D., Nervina J.M. CBCT in orthodontics: assessment of treatment outcomes and indications for its use. Dentomaxillofac Radiol 2015; 44(1): 20140282, https://doi.org/10.1259/dmfr.20140282.
  29. Salari B., Tofangchiha M., Padisar P., Reda R., Zanza A., Testarelli L. Diagnostic accuracy of conventional orthodontic radiographic modalities and cone-beam computed tomography for localization of impacted maxillary canine teeth. Sci Prog 2024; 107(1): 368504241228077, https://doi.org/10.1177/00368504241228077.
  30. Eslami E., Barkhordar H., Abramovitch K., Kim J., Masoud M.I. Cone-beam computed tomography vs conventional radiography in visualization of maxillary impacted-canine localization: a systematic review of comparative studies. Am J Orthod Dentofacial Orthop 2017; 151(2): 248–258, https://doi.org/10.1016/j.ajodo.2016.07.018.
  31. de-Azevedo-Vaz S.L., Peyneau P.D., Ramirez-Sotelo L.R., Vasconcelos Kde F., Campos P.S., Haiter-Neto F. Efficacy of a cone beam computed tomography metal artifact reduction algorithm for the detection of peri-implant fenestrations and dehiscences. Oral Surg Oral Med Oral Pathol Oral Radiol 2016; 121(5): 550–556, https://doi.org/10.1016/j.oooo.2016.01.013.
  32. Togan B., Gander T., Lanzer M., Martin R., Lübbers H.T. Incidence and frequency of nondental incidental findings on cone-beam computed tomography. J Craniomaxillofac Surg 2016; 44(9): 1373–1380, https://doi.org/10.1016/j.jcms.2016.06.026.
  33. Gillot M., Miranda F., Baquero B., Ruellas A., Gurgel M., Al Turkestani N., Anchling L., Hutin N., Biggs E., Yatabe M., Paniagua B., Fillion-Robin J.C., Allemang D., Bianchi J., Cevidanes L., Prieto J.C. Automatic landmark identification in cone-beam computed tomography. Orthod Craniofac Res 2023; 26(4): 560–567, https://doi.org/10.1111/ocr.12642.
  34. Xu S., Peng H., Yang L., Zhong W., Gao X., Song J. An automatic grading system for orthodontically induced external root resorption based on deep convolutional neural network. J Imaging Inform Med 2024, https://doi.org/10.1007/s10278-024-01045-6.
  35. Schwarz L., Unger E., Gahleitner A., Rausch-Fan X., Jonke E. A novel approach for gingiva thickness measurements around lower anterior teeth by means of dental magnetic resonance imaging. Clin Oral Investi 2023; 28(1): 18, https://doi.org/10.1007/s00784-023-05459-4.
  36. Abesi F., Hozuri M., Zamani M. Performance of artificial intelligence using cone-beam computed tomography for segmentation of oral and maxillofacial structures: a systematic review and meta-analysis. J Clin Exp Dent 2023; 15(11): e954–e962, https://doi.org/10.4317/jced.60287.
  37. Cattaneo P.M., Bloch C.B., Calmar D., Hjortshøj M., Melsen B. Comparison between conventional and cone-beam computed tomography-generated cephalograms. Am J Orthod Dentofacial Orthop 2008; 134(6): 798–802, https://doi.org/10.1016/j.ajodo.2008.07.008.
  38. Park J.H., Hwang H.W., Moon J.H., Yu Y., Kim H., Her S.B., Srinivasan G., Aljanabi M.N.A., Donatelli R.E., Lee S.J. Automated identification of cephalometric landmarks: part 1-comparisons between the latest deep-learning methods YOLOV3 and SSD. Angle Orthod 2019; 89(6): 903–909, https://doi.org/10.2319/022019-127.1.
  39. Chang Z.C., Hu F.C., Lai E., Yao C.C., Chen M.H., Chen Y.J. Landmark identification errors on cone-beam computed tomography-derived cephalograms and conventional digital cephalograms. Am J Orthod Dentofacial Orthop 2011; 140(6): e289–e297, https://doi.org/10.1016/j.ajodo.2011.06.024.
  40. Huang Y., Fan F., Syben C., Roser P., Mill L., Maier A. Cephalogram synthesis and landmark detection in dental cone-beam CT systems. Med Image Anal 2021; 70: 102028, https://doi.org/10.1016/j.media.2021.102028.
  41. Kotuła J., Kuc A.E., Lis J., Kawala B., Sarul M. New sagittal and vertical cephalometric analysis methods: a systematic review. Diagnostics (Basel) 2022; 12(7): 1723, https://doi.org/10.3390/diagnostics12071723.
  42. Palczewska-Komsa M.P., Gapiński B., Nowicka A. The influence of new bioactive materials on pulp-dentin complex regeneration in the assessment of cone bone computed tomography (CBCT) and computed micro-tomography (micro-CT) from a present and future perspective — a systematic review. J Clin Med 2022; 11(11): 3091, https://doi.org/10.3390/jcm11113091.
  43. Frąckiewicz W., Jankowska A., Machoy M.E. CBCT and modern intraoral scanners as tools for developing comprehensive, interdisciplinary treatment plans. Adv Clin Exp Med 2024, https://doi.org/10.17219/acem/175817.
  44. Patel N. Integrating three-dimensional digital technologies for comprehensive implant dentistry. J Am Dent Assoc 2010; 141(2): 20S–24S, https://doi.org/10.14219/jada.archive.2010.0357.
  45. Naumovich S.S., Naumovich S.A. Cone beam computed tomography: contemporary possibilities and perspectives of application in dentistry. Sovremennaa stomatologia 2012; 2: 31–36.
  46. Treil J., Casteigt J., Borianne P., Madrid C., Jaeger M., de Bonnecaze P. The architectural balance of the face: a 3D cephalometric concept. Rev Stomatol Chir Maxillofac 1999; 100(3): 111–112.
  47. Olszewski R., Cosnard G., Macq B., Mahy P., Reychler H. 3D CT-based cephalometric analysis: 3D cephalometric theoretical concept and software. Neuroradiology 2006; 48(11): 53–62, https://doi.org/10.1007/s00234-006-0140-x.
  48. Krysteva S., Mateva N., Boeva T. Radiological evaluation of transverse maxillofacial disparity. Stomatologiya 2013; 92(5): 55–60.
  49. Swennen G.R., Schutyser F. Three-dimensional cephalometry: spiral multi-slice vs cone-beam computed tomography. Am J Orthod Dentofacial Orthop 2006; 130(3): 410–416, https://doi.org/10.1016/j.ajodo.2005.11.035.
  50. Baldini B., Cavagnetto D., Baselli G., Sforza C., Tartaglia G.M. Cephalometric measurements performed on CBCT and reconstructed lateral cephalograms: a cross-sectional study providing a quantitative approach of differences and bias. BMC Oral Health 2022; 22(1): 98, https://doi.org/10.1186/s12903-022-02131-3.
  51. Hou D., Capote R., Bayirli B., Chan D.C.N., Huang G. The effect of digital diagnostic setups on orthodontic treatment planning. Am J Orthod Dentofacial Orthop 2020; 157(4): 542–549, https://doi.org/10.1016/j.ajodo.2019.09.008.
  52. Jiang X., Pei J., Liu J., Liao X., Jia F. An MRI-only three-dimensional cephalometry protocol based on the integrated and modular architecture of the human head. Curr Med Imaging 2023, https://doi.org/10.2174/0115734056258953231026094236.
  53. Alkhayer A., Piffkó J., Lippold C., Segatto E. Accuracy of virtual planning in orthognathic surgery: a systematic review. Head Face Med 20204; 16(1): 34, https://doi.org/10.1186/s13005-020-00250-2.
  54. Pachnicz D., Ramos A. Mandibular condyle displacements after orthognathic surgery-an overview of quantitative studies. Quant Imaging Med Surg 2021; 11(4): 1628–1650, https://doi.org/10.21037/qims-20-677.
  55. He X., He J., Yuan H., Chen W., Jiang H., Cheng J. Surgery-first and orthodontic-first approaches produce similar patterns of condylar displacement and remodeling in patients with skeletal class III malocclusion. J Oral Maxillofac Surg 2019; 77(7): 1446–1456, https://doi.org/10.1016/j.joms.2019.01.061.
  56. Chen Y.F., Baan F., Bruggink R., Bronkhorst E., Liao Y.F., Ongkosuwito E. Three-dimensional characterization of mandibular asymmetry in craniofacial microsomia. Clin Oral Investig 2020; 24(12): 4363–4372, https://doi.org/10.1007/s00784-020-03302-8.
  57. Warburton G., Mercuri L.G. Alloplastic reconstruction of the temporomandibular joint in patients with dentofacial deformities. Atlas Oral Maxillofac Surg Clin North Am 2022; 30(2): 223–233, https://doi.org/10.1016/j.cxom.2022.06.004.
  58. Chaaban M., AlSulaiman A., Kantarci A., Stashenko P., Will L.A., Motro M. Longitudinal changes in the dental arch width and symmetry in identical and fraternal twins. Am J Orthod Dentofacial Orthop 2022; 162(5): 704–713, https://doi.org/10.1016/j.ajodo.2021.06.026.
  59. Neumann P., Siebert D., Faulkner G., Krauss M., Schulz A., Lwowsky C., Tolxdorff T. Virtual 3D cutting for bone segment extraction in maxillofacial surgery planning. Stud Health Technol Inform 1999; 62: 235–241.
  60. Schepers R.H., Raghoebar G.M., Vissink A., Lahoda L.U., van der Meer W.J., Roodenburg J.L., Reintsema H., Witjes M.J. Three dimensional technology and reconstructions of large defects of the jaw. Ned Tijdschr Tandheelkd 2013; 120(9): 462–468, https://doi.org/10.5177/ntvt.2013.09.12261.
  61. Jacobson A., Jacobson R.L. Radiographic cephalometry: from basics to 3-D imaging. 2nd edition. Quintessence Pub Co; 2006.
  62. Bettega G., Payan Y., Mollard B., Boyer A., Raphaël B., Lavallée S. A simulator for maxillofacial surgery integrating 3D cephalometry and orthodontia. Comput Aided Surg 2000; 5(3): 156–165, https://doi.org/10.1002/1097-0150(2000)5:3156::aid-igs33.0.co;2-6.
  63. Perrotti G., Testori T., Politi M. 3D imaging and dentistry from multiplanar cephalometry to guided navigation in implantology. Stoma Edu J 2017; 4(3): 229, https://doi.org/10.25241/stomaeduj.2017.4(3).bookreview.7.
  64. Perrotti G., Baccaglione G., Clauser T., Testarelli L., Del Fabbro M., Testori T. Total face approach (TFA): a novel 3D approach to describe the main cephalometric craniomaxillofacial parameters. Methods Protoc 2021; 4(1): 15, https://doi.org/10.3390/mps4010015.
  65. Patel S., Brown J., Pimentel T., Kelly R.D., Abella F., Durack C. Cone beam computed tomography in Endodontics — a review of the literature. Int Endod J 2019; 52(8): 1138–1152, https://doi.org/10.1111/iej.13115.
  66. Holdaway R.A. A soft-tissue cephalometric analysis and its use in orthodontic treatment planning. Part I. Am J Orthod 1983; 84(1): 1–28, https://doi.org/10.1016/0002-9416(83)90144-6.
  67. Hans M.G., Palomo J.M., Valiathan M. History of imaging in orthodontics from Broadbent to cone-beam computed tomography. Am J Orthod Dentofacial Orthop 2015; 148(6): 914–921, https://doi.org/10.1016/j.ajodo.2015.09.007.
  68. Postnikov M.A., Slesarev O.V., Trunin D.A., Andriyanov D.A., Ispanova S.N. Automated analysis of X-ray images of the temporomandibular joint in patients with orthognathic bite and physiological occlusion. Vestnik rentgenologii i radiologii 2019; 100(1): 6–14, https://doi.org/10.20862/0042-4676-2019-100-1-6-14.
  69. Jacobs R., Salmon B., Codari M., Hassan B., Bornstein M.M. Cone beam computed tomography in implant dentistry: recommendations for clinical use. BMC Oral Health 2018; 18(1): 88, https://doi.org/10.1186/s12903-018-0523-5.
  70. Liu J., Hao J., Lin H., Pan W., Yang J., Feng Y., Wang G., Li J., Jin Z., Zhao Z., Liu Z. Deep learning-enabled 3D multimodal fusion of cone-beam CT and intraoral mesh scans for clinically applicable tooth-bone reconstruction. Patterns (N Y) 2023; 4(9): 100825, https://doi.org/10.1016/j.patter.2023.100825.
  71. Flis P.S., Brodetska L.O. Analysis of X-ray features of the location of impacted teeth in the examined patients. Vestnik stomatologii 2019; 33(3): 47–53.
  72. Ternovoy S.K., Serova N.S., Ivanova D.V. Radiodiagnostic methods for dental anomalities. Vestnik rentgenologii i radiologii 2012; 6: 4–7.
  73. Jang T.J., Kim K.C., Cho H.C., Seo J.K. A fully automated method for 3D individual tooth identification and segmentation in dental CBCT. IEEE Trans Pattern Anal Mach Intell 2022; 44(10): 6562–6568, https://doi.org/10.1109/tpami.2021.3086072.
  74. Dinu Ş., Todor L., Zetu I.N., Păcurar M., Porumb A., Milutinovici R.A., Popovici R.A., Brad S., Sink B.A., Popa M. Radiographic methods for locating impacted maxillary canines. Rom J Morphol Embryol 2022; 63(4): 599–606, https://doi.org/10.47162/rjme.63.4.01.
  75. Postnikov M.A., Trunin D.A., Stepanov G.V., Kirilin M.M., Kortunova E.O. Method of diagnosis of impacted teeth on the upper jaw using cone-beam computed tomography. Stomatologia detskogo vozrasta i profilaktika 2018; 17(2): 17–23, https://doi.org/10.25636/pmp.3.2018.2.3.
  76. Arkhipova A.S., Arkhipov A.V. Method of making position of maxilla. Patent RU 2689860C1. 2019.
  77. Maspero C., Farronato M., Bellincioni F., Cavagnetto D., Abate A. Assessing mandibular body changes in growing subjects: a comparison of CBCT and reconstructed lateral cephalogram measurements. Sci Rep 2020; 10(1): 11722, https://doi.org/10.1038/s41598-020-68562-6.
  78. Ishchenko E.A., Popov N.V. Measurement of maxillary apical base parameters from CBCT data. Ortodontia 2022; 3: 47.
  79. Kolsanov A.V., Popov N.V., Ayupova I.O. A method for determining parameters of the upper jaw in three-dimensional space. Patent RU 2023100458.
  80. Pittayapat P., Bornstein M.M., Imada T.S., Coucke W., Lambrichts I., Jacobs R. Accuracy of linear measurements using three imaging modalities: two lateral cephalograms and one 3D model from CBCT data. Eur J Orthod 2015; 37(2): 202–208, https://doi.org/10.1093/ejo/cju036.
  81. Farronato M., Cavagnetto D., Abate A., Cressoni P., Fama A., Maspero C. Assessment of condylar volume and ramus height in JIA patients with unilateral and bilateral TMJ involvement: retrospective case-control study. Clin Oral Investig 2020; 24(8): 2635–2643 https://doi.org/10.1007/s00784-019-03122-5.
  82. Maspero C., Abate A., Bellincioni F., Cavagnetto D., Lanteri V., Costa A., Farronato M. Comparison of a tridimensional cephalometric analysis performed on 3T-MRI compared with CBCT: a pilot study in adults. Prog Orthod 2019; 20(1): 40, https://doi.org/10.1186/s40510-019-0293-x.
  83. Aiupova I.O., Butorina O.A., Kolsanov A.V., Popov N.V., Tiunova N.V., Davidiuk M.A. Lower jawbone structures symmetry evaluation using cone beam computed tomography. Stomatologiya 2023; 102(6): 33–38, https://doi.org/10.17116/stomat202310206133.
  84. Polizzi A., Quinzi V., Ronsivalle V., Venezia P., Santonocito S., Lo Giudice A., Leonardi R., Isola G. Tooth automatic segmentation from CBCT images: a systematic review. Clin Oral Investig 2023; 27(7): 3363–3378, https://doi.org/10.1007/s00784-023-05048-5.
  85. Leonardi R. Cone-beam computed tomography and three-dimensional orthodontics. Where we are and future perspectives. J Orthod 2019; 46(1 Suppl): 45–48, https://doi.org/10.1177/1465312519840029.
  86. Nijkamp P.G., Habets L.L., Aartman I.H., Zentner A. The influence of cephalometrics on orthodontic treatment planning. Eur J Orthod 2008; 30(6): 630–635, https://doi.org/10.1093/ejo/cjn059.
  87. Chung E.J., Yang B.E., Park I.Y., Yi S., On S.W., Kim Y.H., Kang S.H., Byun S.H. Effectiveness of cone-beam computed tomography-generated cephalograms using artificial intelligence cephalometric analysis. Sci Rep 2022; 12(1): 20585, https://doi.org/10.1038/s41598-022-25215-0.
  88. Kim J.H., An S., Hwang D.M. Reliability of cephalometric landmark identification on three-dimensional computed tomographic images. Br J Oral Maxillofac Surg 2022; 60(3): 320–325, https://doi.org/10.1016/j.bjoms.2021.07.003.
  89. Zhao J., Xu Y., Wang J., Lu Z., Qi K. 3-dimensional analysis of hard- and soft-tissue symmetry in a Chinese population. BMC Oral Health 2023; 23(1): 32, https://doi.org/10.1186/s12903-023-03163-z.
  90. Gateno J., Xia J.J., Teichgraeber J.F. A new three-dimensional cephalometric analysis for orthognathic surgery. J Oral Maxillofac Surg 2011; 69(3): 606–622, https://doi.org/10.1016/j.joms.2010.09.010.
  91. Hariharan A., Diwakar N.R., Jayanthi K., Hema H.M., Deepukrishna S., Ghaste S.R. The reliability of cephalometric measurements in oral and maxillofacial imaging: cone beam computed tomography versus two-dimensional digital cephalograms. Indian J Dent Res 2016; 27(4): 370–377, https://doi.org/10.4103/0970-9290.191884.
  92. Hwang H.W., Moon J.H., Kim M.G., Donatelli R.E., Lee S.J. Evaluation of automated cephalometric analysis based on the latest deep learning method. Angle Orthod 2021; 91(3): 329–335, https://doi.org/10.2319/021220-100.1.
  93. Dakhno L., Vyshemyrska T., Burlakov P., Storozhenko K., Flis P. Assesment of the feasibility of using cone-beam computed tomography in children for diagnostics, 3D cephalometry and planning orthodontic treatment (review). Georgian Med News 2022; 323: 54-60.
  94. Adams G.L., Gansky S.A., Miller A.J., Harrell W.E. Jr., Hatcher D.C. Comparison between traditional 2-dimensional cephalometry and a 3-dimensional approach on human dry skulls. Am J Orthod Dentofac Orthop 2004; 126(4): 397–409, https://doi.org/10.1016/j.ajodo.2004.03.023.
Ayupova I.О., Makhota A.Yu., Kolsanov A.V., Popov N.V., Davidyuk M.A., Nekrasov I.A., Romanova P.A., Khamadeeva A.M. Capabilities of Cephalometric Methods to Study X-rays in Three-Dimensional Space (Review). Sovremennye tehnologii v medicine 2024; 16(3): 62, https://doi.org/10.17691/stm2024.16.3.07


Journal in Databases

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg

SCImago Journal & Country Rank