Today: Jan 22, 2025
RU / EN
Last update: Dec 27, 2024

Rotational Alignment of Components in Total Knee Arthroplasty (Review)

El Qaseer M.H., Zykin A.A., Malyshev E.E.

Key words: total knee arthroplasty; rotational alignment; knee endoprosthesis components.

Total knee arthroplasty (TKA) is one of the most common surgeries aimed at restoring the joint functions and improving the life quality of patients with severe osteoarthritis, rheumatoid arthritis, and other degenerative dystrophic disorders. The key aspect of a successful procedure is the correct alignment of endoprosthesis components, a rotational position in particular.

The aimof the present review is to analyze the literature data on rotational alignment of endoprosthetic components in TKA to determine the optimal approaches providing improved functional results.

The literature was searched in PubMed (MEDLINE), Scopus, and eLIBRARY.RU by key words: total knee arthroplasty, rotational alignment, knee endoprosthesis components.

The review considered the main techniques and approaches concerning the rotation position determination of endoprosthetic components in TKA. The frequency of use of both surgical and anatomical transepicondylar lines was found to be equal, the main landmarks being the posterior condylar line and Whiteside line. The analyzed studies suggest the relevance of the rotational alignment of endoprosthetic components and the necessity for further research to develop standard protocols focused on reducing complication risks and TKA efficiency improvement.



References

  1. Cho Y., Lee M.C. Rotational alignment in total knee arthroplasty. Asia-Pacific Journal of Sports Medicine, Arthroscopy, Rehabilitation and Technology 2014; 1(4): 113–118, https://doi.org/10.1016/j.asmart.2014.08.001.
  2. Varacallo M., Luo T.D., Mabrouk A., Johanson N.A. Total knee arthroplasty techniques [Updated 2024 May 6]. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2024. URL: https://www.ncbi.nlm.nih.gov/books/NBK499896.
  3. Alrawashdeh W., Eschweiler J., Migliorini F., El Mansy Y., Tingart M., Rath B. Effectiveness of total knee arthroplasty rehabilitation programmes: a systematic review and meta-analysis. J Rehabil Med 2021; 53(6): jrm00200, https://doi.org/10.2340/16501977-2827.
  4. Hohman D.W. Jr, Nodzo S.R., Phillips M., Fitz W. The implications of mechanical alignment on soft tissue balancing in total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 2015; 23(12): 3632–3636, https://doi.org/10.1007/s00167-014-3262-4.
  5. Elkins J.M., Jennings J.M., Johnson R.M., Brady A.C., Parisi T.J., Dennis D.A. Component rotation in well-functioning, gap balanced total knee arthroplasty without navigation. J Arthroplasty 2023; 38(6S): S204–S208, https://doi.org/10.1016/j.arth.2023.03.033.
  6. Gorbatov R.O., Malyshev E.E., Romanov A.D., Karyakin N.N. Total knee arthroplasty using virtual prototyping and additive manufacturing. Sovremennye tehnologii v medicine 2018; 10(3): 146, https://doi.org/10.17691/stm2018.10.3.18.
  7. Jang E.S., Connors-Ehlert R., LiArno S., Geller J.A., Cooper H.J., Shah R.P. Accuracy of reference axes for femoral component rotation in total knee arthroplasty: computed tomography-based study of 2,128 femora. J Bone Joint Surg Am 2019; 101(23):e125, https://doi.org/10.2106/JBJS.19.00438.
  8. Nam J.H., Koh Y.G., Kim P.S., Park J.H., Kang K.T. Effect of the presence of the articular cartilage on the femoral component rotation in total knee arthroplasty in female and varus osteoarthritis knees. J Orthop Surg Res 2020; 15(1): 499, https://doi.org/10.1186/s13018-020-02030-9.
  9. Malzer U., Schuler P., Shaposhnikov Y.G. The alignment of components in total hiparthroplasty. N.N. Priorov Journal of Traumatology and Orthopedics 1999; 6(1): 16–21, https://doi.org/10.17816/vto98411.
  10. Boldt J.G. Femoral component alignment in TKA. In: Navigation and robotics in total joint and spine surgery. Springer, Berlin, Heidelberg; 2004, https://doi.org/10.1007/978-3-642-59290-4_27.
  11. Park I.S., Ong A., Nam C.H., Ahn N.K., Ahn H.S., Lee S.C., Jung K.A. Transepicondylar axes for femoral component rotation might produce flexion asymmetry during total knee arthroplasty in knees with proximal tibia vara. Knee 2014; 21(2): 369–373, https://doi.org/10.1016/j.knee.2013.04.015.
  12. Jerosch J., Peuker E., Philipps B., Filler T. Interindividual reproducibility in perioperative rotational alignment of femoral components in knee prosthetic surgery using the transepicondylar axis. Knee Surg Sports Traumatol Arthrosc 2002; 10(3): 194–197, https://doi.org/10.1007/s00167-001-0271-x.
  13. Castelli C.C., Falvo D.A., Iapicca M.L., Gotti V. Rotational alignment of the femoral component in total knee arthroplasty. Ann Transl Med 2016; 4(1): 4, https://doi.org/10.3978/j.issn.2305-5839.2015.12.66.
  14. Victor J. Rotational alignment of the distal femur: a literature review. Orthop Traumatol Surg Res 2009; 95(5): 365–372, https://doi.org/10.1016/j.otsr.2009.04.011.
  15. Talbot S., Dimitriou P., Radic R., Zordan R., Bartlett J. The sulcus line of the trochlear groove is more accurate than Whiteside’s Line in determining femoral component rotation. Knee Surg Sports Traumatol Arthrosc 2015; 23(11): 3306–3316, https://doi.org/10.1007/s00167-014-3137-8.
  16. Ignatenko V.L., Kornilov N.N., Kulyaba T.A., Selin A.V., Petukhov A.I., Croitoru I.I., Saraev A.V. Arthroplasty at valgus deformity of the knee (review). Travmatologiya i ortopediya Rossii 2011; 4(62): 140–146.
  17. Stiehl J.B., Cherveny P.M. Femoral rotational alignment using the tibial shaft axis in total knee arthroplasty. Clin Orthop Relat Res 1996; 331: 47–55, https://doi.org/10.1097/00003086-199610000-00007.
  18. Schiraldi M., Bonzanini G., Chirillo D., de Tullio V. Mechanical and kinematic alignment in total knee arthroplasty. Ann Transl Med 2016; 4(7): 130, https://doi.org/10.21037/atm.2016.03.31.
  19. Hungerford D.S., Krackow K.A. Total joint arthroplasty of the knee. Clin Orthop Relat Res 1985; 192: 23–33.
  20. Insall J.N. Technique of total knee replacement. In: Dorr L.D. (editor). The knee. Papers of the first scientific meeting of the Knee Society. Baltimore, University Park Press; 1985; p. 23–26.
  21. Smetanin S.M. Biomekhanicheskoe obosnovanie endoprotezirovaniya kolennogo sustava pri strukturno-funktsional’nykh narusheniyakh. Dis. … dokt. med. nauk [Biomechanical substantiation of knee joint endoprosthetics in case of structural and functional disorders. DSc Dissertation]. Moscow; 2018.
  22. Egorova E.A., Koshelev P.O. Radiodiagnostics in shoulder joint arthroplasty (literature review). Radiology — Practice 2022; 6: 33–46, https://doi.org/10.52560/2713-0118-2022-6-33-46.
  23. Kornilov N.N., Kulyaba T.A., Novoselov K.A. Endoprotezirovanie kolennogo sustava [Knee joint endoprosthetics]. Saint Petersburg: Gippokrat; 2006.
  24. Hattori Y., Asai N., Mori K., Mori S., Ikuta K., Kazama Y., Sato T., Kaneko A. Evaluation of an operation support system using the femoral anterior tangent line to determine intraoperative femoral component rotation in total knee arthroplasty. J Orthop Sci 2022; 27(3): 658–664, https://doi.org/10.1016/j.jos.2021.02.008.
  25. Ji H.M., Jin D.S., Han J., Choo H.S., Won Y.Y. Comparison of alternate references for femoral rotation in female patients undergoing total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 2016; 24(8): 2402–2406, https://doi.org/10.1007/s00167-015-3506-y.
  26. Schröder J., Saris D., Besselaar P.P., Marti R.K. Comparison of the results of the Girdlestone pseudarthrosis with reimplantation of a total hip replacement. Int Orthop 1998; 22(4): 215–218, https://doi.org/10.1007/s002640050245.
  27. Jerosch J. Infektionen des Bewegungsapparates. Diagnostik und Therapie. Thieme, Stuttgart; 1995.
  28. Dalury D.F. Observations of the proximal tibia in total knee arthroplasty. Clin Orthop Relat Res 2001; 389: 150–155, https://doi.org/10.1097/00003086-200108000-00021.
  29. Uehara K., Kadoya Y., Kobayashi A., Ohashi H., Yamano Y. Bone anatomy and rotational alignment in total knee arthroplasty. Clin Orthop Relat Res 2002; 402: 196–201, https://doi.org/10.1097/00003086-200209000-00018.
  30. Akagi M., Oh M., Nonaka T., Tsujimoto H., Asano T., Hamanishi C. An anteroposterior axis of the tibia for total knee arthroplasty. Clin Orthop Relat Res 2004; 420: 213–219, https://doi.org/10.1097/00003086-200403000-00030.
  31. Ertan M.B., Kose O., Tasatan E., Cakar A., Asoglu M.M., Dikmen İ. Is the Akagi line a reliable landmark for adjusting the rotational axis of the tibial component in patients with patellofemoral instability? Indian J Orthop 2023; 57(6): 838–846, https://doi.org/10.1007/s43465-023-00868-9.
  32. Aglietti P., Sensi L., Cuomo P., Ciardullo A. Rotational position of femoral and tibial components in TKA using the femoral transepicondylar axis. Clinical Orthopaedics and Related Research 2008; 466: 2751–2755, https://doi.org/10.1007/s11999-008-0452-8.
  33. Saffarini M., Nover L., Tandogan R., Becker R., Moser L.B., Hirschmann M.T., Indelli P.F. The original Akagi line is the most reliable: a systematic review of landmarks for rotational alignment of the tibial component in TKA. Knee Surg Sports Traumatol Arthrosc 2019; 27(4): 1018–1027, https://doi.org/10.1007/s00167-018-5131-z.
  34. Rukovodstvo po pervichnomu endoprotezirovaniyu kolennogo sustava [Guidelines for primary knee arthroplasty]. Pod red. Kulyaby T.A., Kornilova N.N., Tikhilova R.M. [Kulyaba T.A., Kornilova N.N., Tikhilov R.M. (eds.)]. Saint Petersburg: NMITs TO im. R.R. Vredena; 2022.
  35. Sereda A.P., Sagradyan A.S., Lychagin A.V. Endoprosthetics of the articular surface of the patella in total knee arthroplasty. Kafedra travmatologii i ortopedii 2012; 3: 18–28.
  36. Yaffe M., Luo M., Goyal N., Chan P., Patel A., Cayo M., Stulberg S.D. Clinical, functional, and radiographic outcomes following total knee arthroplasty with patient-specific instrumentation, computer-assisted surgery, and manual instrumentation: a short-term follow-up study. Int J Comput Assist Radiol Surg 2014; 9(5): 837–844, https://doi.org/10.1007/s11548-013-0968-6.
  37. Voleti P.B., Hamula M.J., Baldwin K.D., Lee G.C. Current data do not support routine use of patient-specific instrumentation in total knee arthroplasty. J Arthroplasty 2014; 29(9): 1709–1712, https://doi.org/10.1016/j.arth.2014.01.039.
  38. Nedopil A.J., Howell S.M., Hull M.L. Does malrotation of the tibial and femoral components compromise function in kinematically aligned total knee arthroplasty? Orthop Clin North Am 2016; 47(1): 41–50, https://doi.org/10.1016/j.ocl.2015.08.006.
  39. Daines B.K., Dennis D.A. Gap balancing vs. measured resection technique in total knee arthroplasty. Clin Orthop Surg 2014; 6(1): 1–8, https://doi.org/ 10.4055/cios.2014.6.1.1.
  40. Walde T.A., Bussert J., Sehmisch S., Balcarek P., Stürmer K.M., Walde H.J., Frosch K.H. Optimized functional femoral rotation in navigated total knee arthroplasty considering ligament tension. Knee 2010; 17(6): 381–386, https://doi.org/10.1016/j.knee.2009.12.001.
  41. Hetaimish B.M., Khan M.M., Simunovic N., Al-Harbi H.H., Bhandari M., Zalzal P.K. Meta-analysis of navigation vs conventional total knee arthroplasty. J Arthroplasty 2012; 27(6): 1177–1182, https://doi.org/10.1016/j.arth.2011.12.028.
  42. Thienpont E., Fennema P., Price A. Can technology improve alignment during knee arthroplasty. Knee 2013; 20(Suppl 1): S21–S28, https://doi.org/10.1016/S0968-0160(13)70005-X.
  43. Lychagin A.V., Rukin Ya.A., Gricyuk A.A., Elizarov M.P. First experience of using an active robotic surgical system in total knee arthroplasty. Kafedra travmatologii i ortopedii 2019; 4(38): 27–33, https://doi.org/10.17238/issn2226-2016.2019.4.27-33.
  44. Airapetov G.A., Yablonskiy P.K., Serdobintsev M.S., Dziov Z.V., Naumov D.G. Robot-assisted knee arthroplasty: first experience (a prospective randomized study). Genij ortopedii 2023; 29(5): 475–480, https://doi.org/10.18019/1028-4427-2023-29-5-475-480.
  45. Kayani B., Konan S., Ayuob A., Onochie E., Al-Jabri T., Haddad F.S. Robotic technology in total knee arthroplasty: a systematic review. EFORT Open Rev 2019; 4(10): 611–617, https://doi.org/10.1302/2058-5241.4.190022.
  46. Kornilov N.N., Kulyaba T.A. Artroplastika kolennogo sustava [Arthroplasty of the knee joint]. Saint Petersburg: Sankt-Peterburgskij nauchno-issledovatel’skij institut travmatologii i ortopedii im. R.R. Vredena; 2012.
  47. Airapetov G.A., Yablonskiy P.K., Serdobintsev M.S., Dziov Z.V., Naumov D.G. Robot-assisted knee arthroplasty: first experience (a prospective randomized study). Genij ortopedii 2023; 29(5): 475-480, https://doi.org/10.18019/1028-4427-2023-29-5-475-480.
  48. Babushkin V.N., Lykov M.S., Shaevich S.S. Rezul’taty endoprotezirovaniya kolennogo sustava s ispol’zovaniem komp’yuternoy navigatsii u patsientov s nalichiem intramedullyarnykh metallokonstruktsiy diafiza bedrennoy kosti. V kn.: Materialy nauchno-prakticheskoy konferentsii “Chaklinskie chteniya — 2017” [Results of knee arthroplasty using computer navigation in patients with intramedullary metal structures of the femoral diaphysis. In: Proceedings of the scientific and practical conference “Chaklin Readings — 2017”]. Ekaterinburg; 2017; p. 10–11.
  49. Nunley R.M., Ellison B.S., Ruh E.L., Williams B.M., Foreman K., Ford A.D., Barrack R.L. Are patient-specific cutting blocks cost-effective for total knee arthroplasty? Clin Orthop Relat Res 2012; 470(3): 889–894, https://doi.org/10.1007/s11999-011-2221-3.
  50. Kim C.W., Lee C.R. Effects of femoral lateral bowing on coronal alignment and component position after total knee arthroplasty: a comparison of conventional and navigation-assisted surgery. Knee Surg Relat Res 2018; 30(1): 64–73, https://doi.org/10.5792/ksrr.17.056.
  51. Kim S.H., Park Y.B., Song M.K., Lim J.W., Lee H.J. Reliability and validity of the femorotibial mechanical axis angle in primary total knee arthroplasty: navigation versus weight bearing or supine whole leg radiographs. Knee Surg Relat Res 2018; 30(4): 326–333, https://doi.org/10.5792/ksrr.18.028.
  52. Agarwal N., To K., McDonnell S., Khan W. Clinical and radiological outcomes in robotic-assisted total knee arthroplasty: a systematic review and meta-analysis. J Arthroplasty 2020; 35(11): 3393–3409.e2, https://doi.org/10.1016/j.arth.2020.03.005.
  53. Bhimani S.J., Bhimani R., Smith A., Eccles C., Smith L., Malkani A. Robotic-assisted total knee arthroplasty demonstrates decreased postoperative pain and opioid usage compared to conventional total knee arthroplasty. Bone Jt Open 2020; 1(2): 8–12, https://doi.org/10.1302/2046-3758.12.bjo-2019-0004.r1.
  54. Hampp E.L., Chughtai M., Scholl L.Y., Sodhi N., Bhowmik-Stoker M., Jacofsky D.J., Mont M.A. Robotic-arm assisted total knee arthroplasty demonstrated greater accuracy and precision to plan compared with manual techniques. J Knee Surg 2019; 32(3): 239–250, https://doi.org/10.1055/s-0038-1641729.
  55. Watanabe S., Akagi R., Shiko Y., Ono Y., Kawasaki Y., Ohdera T., Ohtori S., Sasho T. Intra- and inter-observer reliability of implant positioning evaluation on a CT-based three-dimensional postoperative matching system for total knee arthroplasty. BMC Musculoskelet Disord 2021; 22(1): 363, https://doi.org/10.1186/s12891-021-04228-2.
  56. Rajgopal A., Sudarshan P., Kumar S., Aggarwal K. Failure modes in malrotated total knee replacement. Arch Orthop Trauma Surg 2023; 143(5): 2713–2720, https://doi.org/10.1007/s00402-022-04569-0.
  57. Hanada M., Hotta K., Matsuyama Y. Impact of implant positions in total knee arthroplasty on the postoperative knee kinematics of tibial rotation. J Orthop 2024; 58: 24–28, https://doi.org/10.1016/j.jor.2024.06.025.
  58. Ebrahimzadeh M.H., Makhmalbaf H., Birjandinejad A., Keshtan F.G., Hoseini H.A., Mazloumi S.M. The Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) in Persian speaking patients with knee osteoarthritis. Arch Bone Jt Surg 2014; 2(1): 57–62.
  59. Luger M., Schopper C., Krottenthaler E.S., Mahmoud M., Heyse T., Gotterbarm T., Klasan A. Not all questions are created equal: the weight of the Oxford Knee Scores questions in a multicentric validation study. J Orthop Traumatol 2023; 24(1): 44, https://doi.org/10.1186/s10195-023-00722-6.
  60. Singh V., Bieganowski T., Huang S., Karia R., Davidovitch R.I., Schwarzkopf R. The Forgotten Joint Score patient-acceptable symptom state following primary total hip arthroplasty. Bone Jt Open 2022; 3(4): 307–313, https://doi.org/10.1302/2633-1462.34.BJO-2022-0010.R1.
  61. Dinjens R.N., Senden R., Heyligers I.C., Grimm B. Clinimetric quality of the new 2011 Knee Society score: high validity, low completion rate. Knee 2014; 21(3): 647–654, https://doi.org/10.1016/j.knee.2014.02.004.
  62. Noble P.C., Conditt M.A., Cook K.F., Mathis K.B. The John Insall Award: Patient expectations affect satisfaction with total knee arthroplasty. Clin Orthop Relat Res 2006; 452: 35–43, https://doi.org/10.1097/01.blo.0000238825.63648.1e.
  63. Behrend H., Giesinger K., Giesinger J.M., Kuster M.S. The “forgotten joint” as the ultimate goal in joint arthroplasty: validation of a new patient-reported outcome measure. J Arthroplasty 2012; 27(3): 430–436.e1, https://doi.org/10.1016/j.arth.2011.06.035.
  64. Suda A.J., Seeger J.B., Bitsch R.G., Krueger M., Clarius M. Are patients’ expectations of hip and knee arthroplasty fulfilled? A prospective study of 130 patients. Orthopedics 2010; 33(2): 76–80, https://doi.org/10.3928/01477447-20100104-07.
  65. Irzhanski A.A., Kulyaba T.A., Kornilov N.N. Validation and cross-cultural adaptation of rating systems WOMAC, KSS AND FJS-12 in patients with knee disorders and injuries. Traumatology and Orthopedics of Russia 2018; 24(2): 70–79, https://doi.org/10.21823/2311-2905-2018-24-2-70-79.
  66. Berger R.A., Crossett L.S., Jacobs J.J., Rubash H.E. Malrotation causing patellofemoral complications after total knee arthroplasty. Clin Orthop Relat Res 1998; 356: 144–153, https://doi.org/10.1097/00003086-199811000-00021.
  67. Matsuda S., Miura H., Nagamine R., Urabe K., Hirata G., Iwamoto Y. Effect of femoral and tibial component position on patellar tracking following total knee arthroplasty: 10-year follow-up of Miller-Galante I knees. Am J Knee Surg 2001; 14(3): 152–156.
  68. Akagi M., Matsusue Y., Mata T., Asada Y., Horiguchi M., Iida H., Nakamura T. Effect of rotational alignment on patellar tracking in total knee arthroplasty. Clinical Orthopaedics and Related Research 1999; 366: 155–163, https://doi.org/10.1097/00003086-199909000-00019.
  69. Anouchi Y.S., Whiteside L.A., Kaiser A.D., Milliano M.T. The effects of axial rotational alignment of the femoral component on knee stability and patellar tracking in total knee arthroplasty demonstrated on autopsy specimens. Clinical Orthopaedics and Related Research 1993; 287: 170–177, https://doi.org/10.1097/00003086-199302000-00027.
  70. Olcott C.W., Scott R.D. Femoral component rotation during total knee arthroplasty. Clinical Orthopaedics and Related Research 1999; 367: 39–42, https://doi.org/10.1097/00003086-199910000-00005.
  71. Hanada H., Whiteside L.A., Steiger J., Dyer P., Naito M. Bone landmarks are more reliable than tensioned gaps in TKA component alignment. Clin Orthop Relat Res 2007; 462: 137–142, https://doi.org/10.1097/BLO.0b013e3180dc92e7.
  72. Dzhavadov A.A., Bilyk S.S., Kovalenko A.N., Blizniykov V.V., Ambrosenkov A.V., Denisov A.O., Antipov A.P., Mironov A.R. Estimation of accuracy of positioning of components of knee endoprosthesis in patients operated with the use of patient specific instruments. Sovremennye problemy nauki i obrazovaniya 2018; 5: 51.
  73. Sharkey P.F., Hozack W.J., Rothman R.H., Shastri S., Jacoby S.M. Why are total knee arthroplasties failing today? Clinical Orthopaedics and Related Research 2002; 404: 7–13, https://doi.org/10.1097/00003086-200211000-00003.


Journal in Databases

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg

SCImago Journal & Country Rank