Сегодня: 21.01.2025
RU / EN
Последнее обновление: 27.12.2024
Технология комплексной фототерапии для компенсации нарушений, вызванных высокоинтенсивным лазерным излучением, в эксперименте

Технология комплексной фототерапии для компенсации нарушений, вызванных высокоинтенсивным лазерным излучением, в эксперименте

А.П. Баврина, С.Л. Малиновская, Р.Р. Алакаев, В.А. Монич
Ключевые слова: красный свет; окислительная модификация белков; высокоинтенсивное лазерное излучение.
2015, том 7, номер 4, стр. 78.

Полный текст статьи

html pdf
2087
1831

Цель исследования — разработка новой технологии комплексной фототерапии, основанной на последовательном облучении биологических тканей лазерным излучением высокой интенсивности и низкоинтенсивным широкополосным светом, и оценка ее возможностей в эксперименте.

Материалы и методы. Исследованы эффекты последовательного воздействия на спонтанную и металлкатализируемую окислительную модификацию белков в тканях белых крыс высокоинтенсивным лазерным излучением инфракрасного и красного диапазонов и низкоинтенсивным широкополосным красным светом. Исследование проводилось на беспородных белых крысах массой 180–250 г, которые были разделены на 5 групп: 1-я контрольная группа — животным выполняли локальное облучение внутренней поверхности бедра лазерным светом с длиной волны 671 нм (красный лазер) и мощностью 50 мВт; 2-я опытная группа — выполняли локальное облучение внутренней поверхности бедра красным лазером + три сеанса воздействия низкоинтенсивным широкополосным красным светом (длина волны 630 нм, интенсивность в зоне светового пятна составила 5 мВт/см2); 3-я контрольная группа — выполняли локальное облучение внутренней поверхности бедра лазерным светом с длиной волны 980 нм (инфракрасный лазер) и мощностью 50 мВт; 4-я опытная группа — производили локальное облучение внутренней поверхности бедра инфракрасным красным лазером + три сеанса воздействия низкоинтенсивным широкополосным красным светом; 5-я, интактная, группа не подвергалась облучению. Забор мышечной ткани бедра и сыворотки крови производили на третьи сутки во всех группах животных.

Результаты. Установлено нарастание содержания алифатических динитрофенилгидразонов нейтрального и основного характера в тканях, облученных высокоинтенсивным лазерным излучением красного и инфракрасного диапазонов. При последующих сеансах фототерапии низкоинтенсивным красным светом происходило резкое снижение уровней продуктов окислительной модификации белков до нормальных значений.

Заключение. Разработанная технология комплексной фототерапии, включающая в себя сеансы последовательного облучения тканей организма лазерным и красным широкополосным светом, обеспечивает радиационную безопасность процедур.

  1. Buravlev E.A., Zhidkova T.V., Vladimirov Y.A., Osipov A.N. Effects of laser and LED radiation on mitochondrial respiration in experimental endotoxic shock. Lasers Med Sci 2013; 28(3): 785–790, http://dx.doi.org/10.1007/s10103-012-1155-7.
  2. Кондратьев А.С., Михайлова И.А., Петрищев Н.Н. Моделирование различных форм повреждения сосудистой стенки с помощью лазерного излучения. Российский физиологический журнал им. И.М. Сеченова 2013; 99(6): 745–750.
  3. Петрищев Н.Н., Янтарева Л.И., Фокин С.И. За­висимость фотоэффекта инфракрасного лазерного излучения от плотности потока мощности и функционального состояния биообъекта (инфузорий Spirostomuni ambiguum). Лазерная медицина 2005; 9(3): 43–48.
  4. Баврина А.П., Монич В.А., Малиновская С.Л., Яков­лева Е.И., Бугрова М.Л., Лазукин В.Ф. Способ коррекции последствий радиационно-индуцированной болезни сердца при помощи низкоинтенсивного электромагнитного излучения в эксперименте. Бюллетень экспериментальной биологии и медицины 2015; 159(1): 115–119.
  5. Karu T., Pyatibrat L. Gene expression under laser and light-emitting diodes radiation for modulation of cell adhesion: possible applications for biotechnology. IUBMB Life 2011; 63(9): 747–753, http://dx.doi.org/10.1002/iub.514.
  6. Monich V.A., Drugova O.V., Lazukin V.F., Bavrina A.P. Low-power light and isolated rat hearts after ischemia of myocardium. J Photochem Photobiol B 2011; 105(1): 21–24, http://dx.doi.org/10.1016/j.jphotobiol.2011.06.006.
  7. Дубинина Е.Е., Бурмистров С.О., Ходов Д.А., Поротов И.Г. Окислительная модификация белков сыворотки крови человека, метод ее определения. Вопросы медицинской химии 1995; 41(1): 24–26.
  8. Баврина А.П., Монич В.А., Ермолаев В.С., Дру­жинин Е.А., Кузнецов С.С. Коррекция последствий облучения ионизирующей радиацией путем воздействия низкоинтенсивным светом. Бюллетень экспериментальной биологии и медицины 2013; 156(11): 608–610.
  9. Малиновская С.Л., Баврина А.П., Ермолаев В.С., Монич В.А. Нормализация процессов свободнорадикального окисления в мышечной ткани при развитии лучевой болезни воздействием низкоинтенсивного красного света в эксперименте. Современные технологии в медицине 2014; 6(2): 32–37.
  10. Mason M.G., Nicholls P., Wilson M.T., Cooper C.E. Nitric oxide inhibition of respiration involves both competitive (heme) and noncompetitive (copper) binding to cytochrome c oxidase. Proc Natl Acad Sci USA 2006; 103(3): 708–713, http://dx.doi.org/10.1073/pnas.0506562103.
  11. Iaffaldano N., Meluzzi A., Manchisi A., Passarella S. Improvement of stored turkey semen quality as a result of He–Ne laser irradiation. Anim Reprod Sci 2005; 85(3–4): 317–325, http://dx.doi.org/10.1016/j.anireprosci.2004.04.043.
  12. Moriyama Y., Nguyen J., Akens M., Moriyama E.H., Lilge L. In vivo effects of low level laser therapy on inducible nitric oxide synthase. Lasers Surg Med 2009; 41(3): 227–231, http://dx.doi.org/10.1002/lsm.20745.
  13. Удут В.В., Прокопьев В.А. Биофизические основы действия излучения гелий-неонового лазера с длиной волны 632,8 нм на кровь и организм человека. Альманах клинической медицины 2006; 12: 41.
Bavrina А.P., Malinovskaya S.L., Alakaev R.R., Monich V.А. Сomplex Phototherapy for Compensation of Damages Induced by High-Intensity Laser Radiation in Experiment. Sovremennye tehnologii v medicine 2015; 7(4): 78, https://doi.org/10.17691/stm2015.7.4.10


Журнал базах данных

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg

SCImago Journal & Country Rank