Сегодня: 21.01.2025
RU / EN
Последнее обновление: 27.12.2024
Видеоанализ движений человека в клинической практике (обзор)

Видеоанализ движений человека в клинической практике (обзор)

В.В. Борзиков, Н.Н. Рукина, О.В. Воробьева, А.Н. Кузнецов, А.Н. Белова
Ключевые слова: биомеханика; видеоанализ; оптический захват движений; восстановительная медицина.
2015, том 7, номер 4, стр. 201.

Полный текст статьи

html pdf
3529
5498

Развитие технологий восстановительного лечения больных с последствиями заболеваний и травм нервной системы и опорно-двигательного аппарата требует знания механизмов организации локомоций в норме и патологии. Наиболее точным методом исследования структуры двигательных нарушений и их количественной оценки является биомеханический анализ видеоизображения движений. Представлен обзор существующих в настоящее время методов и систем видеоанализа движений человека, которые используются в клинической практике. Рассмотрены технология и методика исследования кинематики движений с помощью оптического захвата с применением светоотражающих маркеров. Особое внимание уделено видеоанализу ходьбы. Даны сведения о применении видеоанализа движений при диагностике локомоторных нарушений, при мониторировании динамики восстановления двигательных функций у пациентов с детским церебральным параличом, у лиц с болезнью Паркинсона при поражениях нервной системы с нарушением управления движениями, последствиями мозгового инсульта, а также при эндо- и экзопротезировании суставов конечностей.

  1. Jonsson H., Kärrholm J. Three-dimensional knee joint movements during a step-up: evaluation after cruciate ligament rupture. J Orthoped Res 1994; 12(6): 769–779, http://dx.doi.org/10.1002/jor.1100120604.
  2. Gavrila D.M. The visual analysis of human movement: a survey. Computer Vision and Image Understanding 1999; 73(1): 82–98, http://dx.doi.org/10.1006/cviu.1998.0716.
  3. Лихачев С.А., Лукашевич В.А. К вопросу применения методики видеоанализа движений. Медицинские новости 2008; 12: 38–44.
  4. Krishnan C., Washabaugh E.P., Seetharaman Y. A low cost real-time motion tracking approach using webcam technology. J Biomech 2015; 48(3): 544–548, http://dx.doi.org/10.1016/j.jbiomech.2014.11.048.
  5. Weber W., Weber E. Mechanik der menschlichen Gehwerkzeuge. Göttingen: Dieterich; 1836.
  6. Marey E. Animal mechanism: a treatise on terrestrial and aerial locomotion. London: Henry S. King & Co.; 1874, http://dx.doi.org/10.5962/bhl.title.84571.
  7. Muybridge E. Animal locomotion. Philadelphia: J.B. Lippincott Company; 1887.
  8. Braune W., Fischer O. Determination of the moments of inertia of the human body and its limbs. Springer-Verlag Berlin Heidelberg; 1988, http://dx.doi.org/10.1007/978-3-662-11236-6.
  9. Baker R. The history of gait analysis before the advent of modern computers. Gait Posture 2007; 26(3): 331–342, http://dx.doi.org/10.1016/j.gaitpost.2006.10.014.
  10. Бернштейн Н.А. О построении движений. М: Государ­ст­венное издательство медицинской литературы; 1947; 254 с.
  11. Романов Д.А. Управление технической подготов­лен­ностью спортсменов на основе компьютерного видеоанализа движений. Дис. ... канд. пед. наук. Краснодар; 2004.
  12. Cedras C., Shah M. Motion-based recognition a survey. Image and Vision Computing 1995; 13(2): 129–155, http://dx.doi.org/10.1016/0262-8856(95)93154-k.
  13. Gavrila D.M., Davis L.S. 3-D model-based tracking of humans in action: a multi-view approach. Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition 1996; p. 73–80, http://dx.doi.org/10.1109/cvpr.1996.517056.
  14. Furnée H. Real-time motion capture systems. In: Allard P., Cappozzo A., Lundberg A., Vaughan C.L. (editors). Three-dimensional analysis of human locomotion. Chichester, UK: John Wiley & Sons; 1997; p. 85–108.
  15. Human motion analysis: current applications and future directions. Harris G.F., Smith P.A. (editors). New York: IEEE Press; 1996.
  16. Wren C.R., Azarbayejani A., Darrell T., Pentland A.P. Pfinder: real-time tracking of the human body. IEEE Transactions on Pattern Analysis and Machine Intelligence 1997; 19(7): 780–785, http://dx.doi.org/10.1109/34.598236.
  17. Kakadiaris I.A., Metaxas D. 3D human body model acquisiton from multiple views. Proceedings of IEEE International Conference on Computer Vision 1995, http://dx.doi.org/10.1109/iccv.1995.466881.
  18. Narayanan P.J., Rander P., Kanade T. Technical Report CMU-RI-TR-95-25. Robotics Institute Carnegie Mellon University; 1995. Synchronous capture of image sequences from multiple cameras.
  19. Karaulova I.A., Hall P.M., Marshall A.D. Tracking people in three dimensions using a hierarchical model of dynamics. Image and Vision Computing 2002; 20: 691–700, http://dx.doi.org/10.1016/s0262-8856(02)00059-8.
  20. Sigal L., Balan A.O., Black M.J. HumanEva: synchronized video and motion capture dataset and baseline algorithm for evaluation of articulated human motion. International Journal of Computer Vision 2009; 87(1–2): 4–27, http://link.springer.com/article/10.1007%2Fs11263-009-0273-6.
  21. Hogg D. Model-based vision: a program to see a walking person. Image and Vision Computing 1983; 1(1): 5–20, http://dx.doi.org/10.1016/0262-8856(83)90003-3.
  22. Lee H.J., Chen Z. Determination of 3D human body posture from a single view. Computer Vision, Graphics, and Image Processing 1985; 29(3): 396, http://dx.doi.org/10.1016/0734-189x(85)90137-9.
  23. Lafortune M.A., Cavanagh P.R., Sommer H.J., Kalenak A. Three-dimensional kinematics of the human knee during walking. J Biomechanics 1992; 25(4): 347–357, http://dx.doi.org/10.1016/0021-9290(92)90254-x.
  24. de Vries W.H.K., Veeger H.E.J., Baten C.T.M., van der Helm F.C.T. Magnetic distortion in motion labs, implications for validating inertial magnetic sensors. Gait Posture 2009; 29(4): 535–541, http://dx.doi.org/10.1016/j.gaitpost.2008.12.004.
  25. Engin M., Demirel A., Engin E.Z., Fedakar M. Recent developments and trends in biomedical sensors. Measurement 2005; 37(2): 173–188, http://dx.doi.org/10.1016/j.measurement.2004.11.002.
  26. Ghoussayni S., Stevens C., Durham S., Ewins D. Assessment and validation of a simple automated method for the detection of gait events and intervals. Gait Posture 2004; 20(3): 266–272, http://dx.doi.org/10.1016/j.gaitpost.2003.10.001.
  27. Kwon D.Y., Gross M. Combining body sensors and visual sensors for motion training. Proceedings of the 2005 ACM SIGCHI International Conference on Advances in Computer Entertainment Technology; Valencia, Spain 15–17 Jun 2005; p. 94–101, http://dx.doi.org/10.1145/1178477.1178490.
  28. Tao W., Liu T., Zheng R., Feng H. Gait analysis using wearable sensors. Sensors (Basel) 2012; 12(2): 2255–2283, http://dx.doi.org/10.3390/s120202255.
  29. Andriacchi T.P., Alexander E.J. Studies of human locomotion: past, present and future. J Biomech 2000; 33(10): 1217–1224, http://dx.doi.org/10.1016/S0021-9290(00)00061-0.
  30. Moeslund T.B., Granum E. A survey of computer vision-based human motion capture. Computer Vision and Image Understanding 2001; 81(3): 231–268, http://dx.doi.org/10.1006/cviu.2000.0897.
  31. Andriacchi T.P., Ogle J.A., Galante J.O. Walking speed as a basis for normal and abnormal gait measurements. J Biomech 1977; 10(4): 261–268, http://dx.doi.org/10.1016/0021-9290(77)90049-5.
  32. Spoor C.W., Veldpaus F.E. Rigid body motion calculated from spatial co-ordinates of markers. J Biomech 1980; 13(4): 391–393, http://dx.doi.org/10.1016/0021-9290(80)90020-2.
  33. Ferrigno G., Pedotti A. Elite: a digital dedicated hardware system for movement analysis via real-time TV signal processing. IEEE Trans Biomed Eng 1985; 32(11): 943–950, http://dx.doi.org/10.1109/tbme.1985.325627.
  34. Доценко В.И., Воронов А.В., Титаренко Н.Ю., Титарен­ко К.Е. Компьютерный видеоанализ движений в спортивной медицине и нейрореабилитации. Медицинский алфавит 2005; 3(41): 12–14.
  35. Cappozzo A., Della Croce U., Leardini A., Chiari L. Human movement analysis using stereophotogrammetry. Part 1: theoretical background. Gait Posture 2005; 21(2): 186–196, http://dx.doi.org/10.1016/j.gaitpost.2004.01.010.
  36. Wang L., Hu W., Tan T. Recent developments in human motion analysis. Pattern Recognition 2003; 36(3): 585–601, http://dx.doi.org/10.1016/s0031-3203(02)00100-0.
  37. IsardI M., Blake A. Visual tracking by stochastic propagation of conditional density. In: Proceeding of the 4th European Conference on Computer Vision. New York: 1996; p. 343–356.
  38. Bregler C., Malik J. Tracking people with twists and exponential maps. Proceedings 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition 1998, http://dx.doi.org/10.1109/cvpr.1998.698581.
  39. Ma Y., Soatto S., Košecká J., Sastry S. An invitation to 3D vision. Interdisciplinary Applied Mathematics. Springer New York; 2004, http://dx.doi.org/10.1007/978-0-387-21779-6.
  40. Cappozzo A., Cappello A., Croce U.D., Pensalfini F. Surface-marker cluster design criteria for 3-D bone movement reconstruction. IEEE Trans Biomed Eng 1997; 44(12): 1165–1174, http://dx.doi.org/10.1109/10.649988.
  41. Ceseracciu E., Sawacha Z., Cobelli C. Comparison of markerless and marker-based motion capture technologies through simultaneous data collection during gait: proof of concept. PLoS One 2014; 9(3): e87640, http://dx.doi.org/10.1371/journal.pone.0087640.
  42. Mündermann L., Corazza S., Andriacchi T. The evolution of methods for the capture of human movement leading to markerless motion capture for biomechanical applications. J Neuroeng Rehabil 2006; 3: 6, http://dx.doi.org/10.1186/1743-0003-3-6.
  43. Власенко В.П. Технология “Motion Capture”. Периферийные устройства. Запорожье; 2007. URL: http://www.bestreferat.ru/referat-401678.html.
  44. Lanshammar H., Persson T., Medved V. Comparison between a marker-based and a marker-free method to estimate centre of rotation using video image analysis. In: Second World Congress of Biomechanics. Amsterdam; 1994.
  45. Besl P., McKay N. A method for registration of 3-D shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence 1992; 14(2): 239–256, http://dx.doi.org/10.1109/34.121791.
  46. Aggarwal J., Cai Q. Human motion analysis: a review. Computer Vision and Image Understanding 1999; 73(3): 428–440, http://dx.doi.org/10.1006/cviu.1998.0744.
  47. Скворцов Д.В. Методика исследования кинематики движений и современные стандарты. Видеоанализ. Лечебная физкультура и спортивная медицина 2012; 12: 4–10.
  48. Kent J., Franklyn-Miller A. Biomechanical models in the study of lower limb amputee kinematics: a review. Prosthet Orthot Int 2011; 35(2): 124–39, http://dx.doi.org/10.1177/0309364611407677.
  49. Andriacchi T.P., Alexander E.J., Toney M.K., Dyrby C., Sum J. A point cluster method for in vivo motion analysis: applied to a study of knee kinematics. J Biomech Eng 1998; 120(6): 743–749, http://dx.doi.org/10.1115/1.2834888.
  50. Zakotnik J., Matheson T., Dürr V. A posture optimization algorithm for model-based motion capture of movement sequences. J Neurosci Methods 2004; 135(1–2): 43–54, http://dx.doi.org/10.1016/j.jneumeth.2003.11.013.
  51. Lu T.-W., O’Connor J.J. Bone position estimation from skin marker coordinates using global optimization with joint constraints. J Biomech 1999; 32(2): 129–134, http://dx.doi.org/10.1016/s0021-9290(98)00158-4.
  52. Herda L., Fua P., Plänkers R., Boulic R., Thalmann D. Using skeleton-based tracking to increase the reliability of optical motion capture. Hum Mov Sci 2001; 20(3): 313–341, http://dx.doi.org/10.1016/s0167-9457(01)00050-1.
  53. Royo Sánchez A.C., Aguilar Martín J.J., Santolaria Mazo J. Development of a new calibration procedure and its experimental validation applied to a human motion capture system. J Biomech Eng 2014; 136(12): 124502, http://dx.doi.org/10.1115/1.4028523.
  54. Romkes J., Rudmann C., Brunner R. Changes in gait and EMG when walking with the Masai Barefoot Technique. Clin Biomech 2006; 21(1): 75–81, http://dx.doi.org/10.1016/j.clinbiomech.2005.08.003.
  55. Wu G., Cavanagh P. ISB recommendation for stan-dardization in the reporting of kinematic data. J Biomech 1995; 28(10): 1257–1261, http://dx.doi.org/10.1016/0021-9290(95)00017-c.
  56. Grood E.S., Suntay W.J. A joint coordinate system for the clinical description of three-dimensional motions: application to the knee. J Biomech Eng 1983; 105(2): 136–144, http://dx.doi.org/10.1115/1.3138397.
  57. Wu G., van der Helm F.C., Veeger H.E., Makhsous M., Van Roy P., Anglin C., Nagels J., Karduna A.R., McQuade K., Wang X., Werner F.W., Buchholz B. ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion — part II: shoulder, elbow, wrist and hand. J Biomech 2005; 38(5): 981–992, http://dx.doi.org/10.1016/j.jbiomech.2004.05.042.
  58. Wu G., Siegler S., Allard P., Kirtley C., Leardini A., Rosenbaum D., Whittle M., D’Lima D.D., Cristofolini L., Witte H., Schmid O., Stokes I. ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion — part I: ankle, hip, and spine. J Biomech 2002; 35(4): 543–548.
  59. Gorton G.E., Hebert D.A., Gannotti M.E. Assessment of the kinematic variability among 12 motion analysis laboratories. Gait and Posture 29(3): 398–402, http://dx.doi.org/10.1016/j.gaitpost.2008.10.060.
  60. Eng J.J., Winter D.A. Kinetic analysis of the lower limb during walking: what information can be gained from a three-dimensional model? J Biomech 1995; 28(6): 753–758, http://dx.doi.org/10.1016/0021-9290(94)00124-m.
  61. Simon R.S. Quantification of human motion: gait analysis-benefits and limitations to its application to clinical problems. J Biomech 2004; 37(12): 1869–1880, http://dx.doi.org/10.1016/j.jbiomech.2004.02.047.
  62. Chau T. A review of analytical techniques for gait data. Part 1: fuzzy, statistical and fractal methods. Gait Posture 2001; 13(1): 49–66, http://dx.doi.org/10.1016/S0966-6362(00)00094-1.
  63. Inman V., Ralston H., Todd F. Human walking. Baltimore: Williams & Wilkins; 1981.
  64. Perry J., Thorofare S., Jon D. Gait analysis: normal and pathological function. JAMA 1992; 268(22): 3257, http://dx.doi.org/10.1097/01241398-199211000-00023.
  65. Winter D.A. Kinematic and kinetic patterns in human gait: variability and compensating effects. Hum Mov Sci 1984; 3(1–2): 51–76, http://dx.doi.org/10.1016/0167-9457(84)90005-8.
  66. Воронов А.В., Доценко В.И., Титаренко К.Е., Титарен­ко Н.Ю. Компьютерный видеоанализ движений в научных исследованиях и клинической практике. В кн.: Социальная педиатрия: сборник научных трудов. Киев; 2005.
  67. Stokic D.S., Horn T.S., Ramshur J.M., Chow J.W. Agreement between temporospatial gait parameters of an electronic walkway and a motion capture system in healthy and chronic stroke populations. Am J Phys Med Rehabil 2009; 88(6): 437–444, http://dx.doi.org/10.1097/PHM.0b013e3181a5b1ec.
  68. Whittle M.W., Barnes S.C. Defining normal ranges for gait parameter. In: Gait Anal Med Photogramm. Vol. 1–3. Oxford, Headington; 1987; p. 46–47.
  69. Ferrari A., Benedetti M.G., Pavan E., Frigo C., Bettinelli D., Rabuffetti M., Crenna P., Leardini A. Quantitative comparison of five current protocols in gait analysis. Gait Posture 2008; 28(2): 207–216, http://dx.doi.org/10.1016/j.gaitpost.2007.11.009.
  70. Leardini A., Sawacha Z., Paolini G., Ingrosso S., Nativo R., Benedetti M.G. A new anatomically based protocol for gait analysis in children. Gait Posture 2007; 26(4): 560–571, http://dx.doi.org/10.1016/j.gaitpost.2006.12.018.
  71. Zhao S., Chen Y.S., Zhang X.L. Clinical application of gait analysis in hip arthroplasty. Orthop Surg 2010; 2(2): 94–99, http://dx.doi.org/10.1111/j.1757-7861.2010.00070.x.
  72. Lawson B.E., Huff A., Goldfarb M. A preliminary investigation of powered prostheses for improved walking biomechanics in bilateral transfemoral amputees. Conf Proc IEEE Eng Med Biol Soc 2012; 2012: 4164–4167, http://dx.doi.org/10.1109/EMBC.2012.6346884.
  73. McInnes K.A., Younger A.S., Oxland T.R. Initial instability in total ankle replacement: a cadaveric biomechanical investigation of the STAR and agility prostheses. J Bone Joint Surg Am 2014; 96(17): e147, http://dx.doi.org/10.2106/JBJS.L.01690.
  74. Alradwan H., Khan M., Grassby M.H., Bedi A., Philippon M.J., Ayeni O.R. Gait and lower extremity kinematic analysis as an outcome measure after femoroacetabular impingement surgery. Arthroscopy 2015; 31(2): 339–344, http://dx.doi.org/10.1016/j.arthro.2014.06.016.
  75. Gribble P., Robinson R. Alterations in knee kinematics and dynamic stability associated with chronic ankle instability. J Athl Train 2009; 44(4): 350–355, http://dx.doi.org/10.4085/1062-6050-44.4.350.
  76. Kim C.M., Eng J.J. Magnitude and pattern of 3D kinematic and kinetic gait profiles in persons with stroke: relationship to walking speed. Gait Posture 2004; 20(2): 140–146, http://dx.doi.org/10.1016/j.gaitpost.2003.07.002.
  77. Das S., Trutoiu L., Murai A., Alcindor D., Oh M., De la Torre F., Hodgins J. Quantitative measurement of motor symptoms in Parkinson’s disease: a study with full-body motion capture data. Conf Proc IEEE Eng Med Biol Soc 2011; 2011: 6789–6792, http://dx.doi.org/10.1109/IEMBS.2011.6091674.
  78. Cedervall Y., Halvorsen K., Aberg A.C. A longitudinal study of gait function and characteristics of gait disturbance in individuals with Alzheimer’s disease. Gait Posture 2014; 39(4): 1022–1027, http://dx.doi.org/10.1016/j.gaitpost.2013.12.026.
  79. Лихачев С.А., Лукашевич В.А., Хроменков А.В. Метод видеоанализа ходьбы как способ объективизации поражения базальных ганглиев при болезни Паркинсона. Журнал неврологии и психиатрии им. С.С. Корсакова 2011; 111(12): 44–47.
  80. Лихачев С.А., Лукашевич В.А. Видеоанализ шагового движения: феноменология визуальной оценки. Международный неврологический журнал 2012; 2: 178–182.
  81. Jerome G.J., Ko S.U., Kauffman D., Studenski S.A., Ferrucci L., Simonsick E.M. Gait characteristics associated with walking speed decline in older adults: results from the Baltimore Longitudinal Study of Aging. Arch Gerontol Geriatr 2015; 60(2): 239–243, http://dx.doi.org/10.1016/j.archger.2015.01.007.
  82. Sawacha Z., Gabriella G., Cristoferi G., Guiotto A., Avogaro A., Cobelli C. Diabetic gait and posture abnormalities: a biomechanical investigation through three dimensional gait analysis. Clin Biomech (Bristol, Avon) 2009; 24(9): 722–728, http://dx.doi.org/10.1016/j.clinbiomech.2009.07.007.
  83. Титаренко Н.Ю., Воронов А.В., Семёнова К.А., До­ценко В.И., Титаренко К.Е., Левченкова В.Д., Полито­ва И.Я. Компьютерный видеоанализ движений в оценке восстановительного лечения детей с резидуальным нейро­моторным дефицитом. Функциональная диагностика 2006; 3: 69–75.
  84. Титаренко Н.Ю., Воронов А.В. Экспериментальное изучение влияния рефлекторно-нагрузочного устройства Гравистат/Гравитон на иннервационный стереотип ходьбы больных спастической диплегией. Журнал неврологии и психиатрии им. С.С. Корсакова 2012; 111(7–2): 18–23.
  85. Tsai C.Y., Hogaboom N.S., Boninger M.L., Koontz A.M. The relationship between independent transfer skills and upper limb kinetics in wheelchair users. Biomed Res Int 2014; 2014: 984526, http://dx.doi.org/10.1155/2014/984526.
  86. Ropars M., Cretual A., Thomazeau H., Kaila R., Bonan I. Volumetric definition of shoulder range of motion and its correlation with clinical signs of shoulder hyperlaxity. A motion capture study. J Shoulder Elbow Surg 2015; 24(2): 310–316, http://dx.doi.org/10.1016/j.jse.2014.06.040.
  87. Crétual A., Bonan I., Ropars M. Development of a novel index of shoulder’s mobility based on the configuration space volume and its link to mono-axial amplitudes. Man Ther 2015; 20(3): 433–439, http://dx.doi.org/10.1016/j.math.2014.10.020.
  88. Maier M.W., Kasten P., Niklasch M., Dreher T., Zeifang F., Rettig O., Wolf S.I. 3D motion capture using the HUX model for monitoring functional changes with arthroplasty in patients with degenerative osteoarthritis. Gait Posture 2014; 39(1): 7–11, http://dx.doi.org/10.1016/j.gaitpost.2013.07.111.
  89. Hebert J.S., Lewicke J., Williams T.R., Vette A.H. Normative data for modified Box and Blocks test measuring upper-limb function via motion capture. J Rehabil Res Dev 2014; 51(6): 918–932, http://dx.doi.org/10.1682/JRRD.2013.10.0228.
  90. Buffi J.H., Sancho Bru J.L., Crisco J.J., Murray W.M. Evaluation of hand motion capture protocol using static computed tomography images: application to an instrumented glove. J Biomech Eng 2014; 136(12): 124501, http://dx.doi.org/10.1115/1.4028521.
  91. Jagos H., Oberzaucher J., Reichel M., Zagler W.L., Hlauschek W. A multimodal approach for insole motion measurement and analysis. Procedia Eng 2010; 2(2): 3103–3108, http://dx.doi.org/10.1016/j.proeng.2010.04.118.
  92. Miller A.L. A new method for synchronization of motion capture and plantar pressure data. Gait Posture 2010; 32(2): 279–381, http://dx.doi.org/10.1016/j.gaitpost.2010.04.012.
  93. Martin C., Bideau B., Bideau N., Nicolas G., Delamarche P., Kulpa R. Energy flow analysis during the tennis serve: comparison between injured and noninjured tennis players. Am J Sports Med 2014; 42(11): 2751–2760, http://dx.doi.org/10.1177/0363546514547173.
  94. Raychoudhury S., Hu D., Ren L. Three-dimensional kinematics of the human metatarsophalangeal joint during level walking. Front Bioeng Biotechnol 2014; 2: 73, http://dx.doi.org/10.3389/fbioe.2014.00073.
  95. Seel Т., Raisch J., Schauer Т. IMU-based joint angle measurement for gait analysis. Sensors (Basel) 2014; 14(4): 6891–6909, http://dx.doi.org/10.3390/s140406891.
  96. Corazza S., Mündermann L., Chaudhari A., Demattio T., Cobelli C., Andriacchi T.P. A markerless motion capture system to study musculoskeletal biomechanics: visual hull and simulated annealing approach. Ann Biomed Eng 34(6): 1019–1029, http://dx.doi.org/10.1007/s10439-006-9122-8.
  97. Lenar J., Witkowski M., Carbone V., Kolk S., Adamázyk M., Sitnik R., van der Krogt M., Verdonschot N. Lower body kinematics evaluation based on a multidirectional four-dimensional structured light measurement. J Biomed Opt 2013; 18(5): 56014, http://dx.doi.org/10.1117/1.JBO.18.5.056014.
  98. Belyea B.C., Lewis E., Gabor Z., Jackson J., King D.L. Validity and intra-rater reliability of 2-dimensional motion analysis using a hand-held tablet compared to traditional 3-dimensional motion analysis. J Sport Rehabil 2015, http://dx.doi.org/10.1123/jsr.2014-0194.
  99. Bonnet V., Sylla N., Cherubini A., Gonzáles A., Azevedo Coste C., Fraisse P., Venture G. Toward an affordable and user-friendly visual motion capture system. Conf Proc IEEE Eng Med Biol Soc 2014; 2014: 3634–3637, http://dx.doi.org/10.1109/EMBC.2014.6944410.
  100. Lin H.-I., Lin Y.-H. A novel teaching system for industrial robots. Sensors (Basel) 2014; 14(4): 6012–6031, http://dx.doi.org/10.3390/s140406012.
Borzikov V.V., Rukina N.N., Vorobyova O.V., Kuznetsov A.N., Belova A.N. Human Motion Video Analysis in Clinical Practice (Review). Sovremennye tehnologii v medicine 2015; 7(4): 201, https://doi.org/10.17691/stm2015.7.4.26


Журнал базах данных

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg

SCImago Journal & Country Rank