Сегодня: 03.12.2024
RU / EN
Последнее обновление: 30.10.2024
Современные методы визуализации стволовых клеток in vivo (обзор)

Современные методы визуализации стволовых клеток in vivo (обзор)

А.В. Мелешина, Е.И. Черкасова, М.В. Ширманова, А.А. Храпичев, В.В. Дуденкова, Е.В. Загайнова
Ключевые слова: стволовые клетки; флюоресцентный имиджинг; биолюминесцентный имиджинг; оптическая когерентная томография; магнитно-резонансная томография; однофотонная эмиссионная компьютерная томография; позитронно-эмиссионная томография; фотоакустический имиджинг.
2015, том 7, номер 4, стр. 174.

Полный текст статьи

html pdf
3811
5108

Применение существующих и разработка новых методов визуализации in vivo определенных групп клеток для задач клеточной регенеративной медицины — перспективное направление современных биомедицинских исследований. Прижизненный биоимиджинг традиционно используется для изучения направления миграции, пролиферации и дифференцировки стволовых клеток в условиях эксперимента и клиники. В настоящее время разработаны методы для визуализации клеток и их структур in vivo с широким выбором показателей чувствительности, разрешения и специфичности, что позволяет подобрать оптимальные условия для проведения исследования. Разнообразие подходов дает возможность осуществлять анатомические, физиологические, фармакологические и молекулярные исследования, причем в некоторых случаях методы могут быть удачно скомбинированы. В настоящее время системы визуализации in vivo продолжают активно совершенствоваться: появляются еще более чувствительные приборы, создаются новые молекулярные метки и стратегии внедрения их в клетку.

В обзоре проведен сравнительный анализ основных существующих методов мониторинга и мечения стволовых клеток и их возможностей в решении экспериментальных и клинических задач, дана оценка их преимуществ и недостатков.

Рассмотрены основные группы методов визуализации, применяемые для прижизненного наблюдения за миграцией клеток: оптические (биолюминесцентные и флюоресцентные, оптическая когерентная томография), неоптические (магнитно-резонансные и радионуклидные), гибридные (фотоакустические) и методы мультимодального имиджинга.

Охарактеризованы особенности методов: чувствительность, разрешение, специфичность, глубина проникновения в ткани. Приведены примеры использования методов прижизненного имиджинга для изучения миграции стволовых клеток различного происхождения в разных моделях. Описаны основные группы контрастирующих агентов, применяемых для повышения контрастности, чувствительности и специфичности методов имиджинга.

  1. Acton P.D., Zhou R. Imaging reporter genes for cell tracking with PET and SPECT. Q J Nucl Med Mol Imaging 2005; 49(4): 349–360.
  2. Chiu R.C. Bone-marrow stem cells as a source for cell therapy. Heart Fail Rev 2003; 8(3): 247–251.
  3. Li Z., Wu J.C., Sheikh A.Y., Kraft D., Cao F., Xie X., Patel M., Gambhir S.S., Robbins R.C., Cooke J.P., Wu J.C. Differentiation, survival, and function of embryonic stem cell derived endothelial cells for ischemic heart disease. Circulation 2007; 116(11 Suppl): I–46–I–54, http://dx.doi.org/10.1161/CIRCULATIONAHA.106.680561.
  4. Cao F., Lin S., Xie X., Ray P., Patel M., Zhang X., Drukker M., Dylla S.J., Connolly A.J., Chen X., Weissman I.L., Gambhir S.S., Wu J.C. In vivo visualization of embryonic stem cell survival, proliferation, and migration after cardiac delivery. Circulation 2006; 113(7): 1005–1014, http://dx.doi.org/10.1161/circulationaha.105.588954.
  5. van der Bogt K.E.A., Swijnenburg R.J., Cao F., Wu J.C. Molecular imaging of human embryonic stem cells: keeping an eye on differentiation, tumorigenicity and immunogenicity. Cell Cycle 2006; 5(23): 2748–2752, http://dx.doi.org/10.4161/cc.5.23.3533.
  6. Chang G.Y., Xie X., Wu J.C. Overview of stem cells and imaging modalities for cardiovascular diseases. J Nucl Cardiol 2006; 13(4): 554–569, http://dx.doi.org/10.1016/j.nuclcard.2006.05.012.
  7. Kim D.E., Schellingerhout D., Ishii K., Shah K., Weissleder R. Imaging of stem cell recruitment to ischemic infarcts in a murine model. Stroke 2004; 35(4): 952–957, http://dx.doi.org/10.1161/01.str.0000120308.21946.5d.
  8. Zhao C., Tian M., Zhang H. In vivo stem cell imaging. Open Nucl Med J 2010; 2: 171–177, http://dx.doi.org/10.2174/1876388X01002010171.
  9. Frangioni J.V., Hajjar R.J. In vivo tracking of stem cells for clinical trials in cardiovascular disease. Circulation 2004; 110(21): 3378–3383, http://dx.doi.org/10.1161/01.cir.0000149840.46523.fc.
  10. Tong L., Zhao H., He Z., Li Z. Current perspectives on molecular imaging for tracking stem cell therapy. In: Medical imaging in clinical practice. Okechukwu F.E. (editor). InTech; 2013; р. 73–79, http://dx.doi.org/10.5772/53028.
  11. Chen Z.-Y., Wang Y.-X., Yang F., Lin Y., Zhou Q.-L., Liao Y.-Y. New researches and application progress of commonly used optical molecular imaging technology. Biomed Res Int 2014, 2014: 429198, http://dx.doi.org/10.1155/2014/429198.
  12. Gao Y., Cui Y., Chan J., Xu C. Stem cell tracking with optically active nanoparticles. Am J Nucl Med Mol Imaging 2013; 3(3): 232–246.
  13. Reagan M.R., Kaplan D.L. Concise review: mesenchymal stem cell tumor-homing: detection methods in disease model systems. Stem Сells 2011; 29(6): 920–927, http://dx.doi.org/10.1002/stem.645.
  14. Соловьева А.О., Зубарева К.Э., Повещенко А.Ф., Нечаева Е.А., Коненков В.И. Способы мечения клеток для визуализации in vivo. Клеточная трансплантология и тканевая инженерия 2013; VIII(4): 33–38.
  15. Колтовой Н.А., Краевой С.А. Флуоресцентные методы диагностики в медицине. M: Bookvika.ru; 2014; 228 с.
  16. Parish C.R. Fluorescent dyes for lymphocyte migration and proliferation studies. Immunol Cell Biol 1999; 77(6): 499–508, http://dx.doi.org/10.1046/j.1440-1711.1999.00877.x.
  17. Li P., Zhang R., Sun H., Chen L., Liu F., Yao C., Du M., Jiang X. PKH26 can transfer to host cells in vitro and vivo. Stem Cells Dev 2013; 22(2): 340–344, http://dx.doi.org/10.1089/scd.2012.0357.
  18. Weston S.A., Parish C.R. New fluorescent dyes for lymphocyte migration studies: analysis by flow cytometry and fluorescence microscopy. J Immunol Methods 1990; 133(1): 87–97, http://dx.doi.org/10.1016/0022-1759(90)90322-M.
  19. Leiker M., Suzuki G., Iyer V.S., Canty J.M. Jr., Lee T. Assessment of a nuclear affinity labeling method for tracking implanted mesenchymal stem cells. Cell Transplant 2008; 17(8): 911–922, http://dx.doi.org/10.3727/096368908786576444.
  20. Wang Y., Xu C., Ow H. Commercial nanoparticles for stem cell labeling and tracking. Theranostics 2013; 3(8): 544–559, http://dx.doi.org/10.7150/thno.5634.
  21. Гусев А.И. Наноматериалы, наноструктуры, нанотехнологии. М: Физматлит; 2005; 416 с.
  22. Зиганшин А.У., Зиганшина Л.Е. Наночастицы: фармакологические надежды и токсикологические проблемы. Казанский медицинский журнал 2008; 89(1): 1–7.
  23. Burns A., Ow H., Wiesner U. Fluorescent core-shell silica nanoparticles: towards “Lab on a Particle” architectures for nanobiotechnology. Chem Soc Rev 2006; 35(11): 1028–1042, http://dx.doi.org/10.1039/B600562B.
  24. Ремпель А.А. Квантовые точки для техники и медицины. Вестник Уральского отделения РАН 2010; 32(2): 45–51.
  25. Rodriguez-Porcel М. In vivo imaging and monitoring of transplanted stem cells: clinical applications. Curr Cardiol Rep 2010; 12(1): 51–58, http://dx.doi.org/10.1007/s11886-009-0073-1.
  26. Морозова Е.С., Верхуша В.В., Перский Е.Э. Флуоресцентные белки красной спектральной области. Вiсник Харкiвського нацiонального унiверситету iм. В.Н. Каразiна Сер. Біологія 2009; 856(9): 29–38.
  27. Kuo C., Coquoz O., Troy T.L., Xu H., Rice B.W. Three-dimensional reconstruction of in vivo bioluminescent sources based on multi-spectral imaging. J Biomed Opt 2007; 12(2): 1–12, http://dx.doi.org/10.1117/1.2717898.
  28. Li Z., Liao W., Cui X., Zhao Q., Liu M., Chen Y., Liu T., Liu N., Wang F., Yi Y., Shao N. Intravenous transplantation of allogeneic bone marrow mesenchymal stem cells and its directional migration to the necrotic femoral head. Int J Med Sci 2011; 8(1): 74–83, http://dx.doi.org/10.7150/ijms.8.74.
  29. Wolf D., Rumpold H., Koeck R. Re: Mesenchymal stem cells: potential precursors for tumor stroma and targeted-delivery vehicles for anticancer agents. J Natl Cancer Inst 2005; 97(7): 540–542, http://dx.doi.org/10.1093/jnci/dji088.
  30. Meleshina А.V., Cherkasova Е.I., Sergeeva Е.А., Kleshnin М.S., Turchin I.V., Kiseleva Е.V., Dashinimaev E.V., Shirmanova М.V., Lukyanov S.А., Zagaynova Е.V. The study of the interaction of mesenchymal stem cells and the tumor using the methods of fluorescent bioimaging. Sovremennye tehnologii v medicine 2012; 4: 7–16.
  31. Konopka R., Hýzdalová M., Kubala L., Pacherník J. New luminescence-based approach to measurement of luciferase gene expression reporter activity and adenosine triphosphate-based determination of cell viability. Folia Biol (Praha) 2010; 56(2): 66–71.
  32. Kuchmiy A.A., Efimov G.A., Nedospasov S.A. Methods for in vivo molecular imaging. Biochemistry (Moscow) 2012; 77(12): 1339–1353, http://dx.doi.org/10.1134/s0006297912120012.
  33. Marques S.M., Esteves da Silva J.C.G. Firefly bioluminescence: a mechanistic approach of luciferase catalyzed reactions. IUBMB Life 2009; 61(1): 6–17, http://dx.doi.org/10.1002/iub.134.
  34. Sato A., Klaunberg B., Tolwani R. In vivo bioluminescence imaging. Comp Med 2004; 54(6): 631–634.
  35. Hickson J., Ackler S., Klaubert D., Bouska J., Ellis P., Foster K., Oleksijew A., Rodriguez L., Schlessinger S., Wang B., Frost D. Noninvasive molecular imaging of apoptosis in vivo using a modified firefly luciferase substrate, Z-DEVD-aminoluciferin. Cell Death Differ 2010; 17(6): 1003–1010, http://dx.doi.org/10.1038/cdd.2009.205.
  36. Paroo Z., Bollinger R.A., Braasch D.A., Richer E., Corey D.R., Antich P.P., Mason R.P. Validating bioluminescence imaging as a high-throughput, quantitative modality for assessing tumor burden. Mol Imaging 2004; 3(2): 117–124, http://dx.doi.org/10.1162/1535350041464865.
  37. Lin Y., Molter J., Lee Z., Gerson S.L. Bioluminescence imaging of hematopoietic stem cell repopulation in murine models. Methods Mol Biol 2008; 430: 295–306, http://dx.doi.org/10.1007/978-1-59745-182-6_20.
  38. Tennstaedt A., Aswendt M., Adamczak J., Hoehn M. Noninvasive multimodal imaging of stem cell transplants in the brain using bioluminescence imaging and magnetic resonance imaging. Methods Mol Biol 2013; 1052: 153–166, http://dx.doi.org/10.1007/7651_2013_14.
  39. Huang N.F., Okogbaa J., Babakhanyan A., Cooke J.P. Bioluminescence imaging of stem cell-based therapeutics for vascular regeneration. Theranostics 2012; 2(4): 346–354, http://dx.doi.org/10.7150/thno.3694.
  40. Lee S., Youn H., Chung T., Hwang do W., Oh S.W., Kang K.W., Chung J.-K., Lee D.S. In vivo bioluminescence imaging of transplanted mesenchymal stem cells as a potential source for pancreatic regeneration. Mol Imaging 2014; 13: 1–12.
  41. Lepperhof V., Polchynski O., Kruttwig K., Brüggemann C., Neef K., Drey F., Zheng Y., Ackermann J.P., Choi Y.H., Wunderlich T.F., Hoehn M., Hescheler J., Sarić T. Bioluminescent imaging of genetically selected induced pluripotent stem cell-derived cardiomyocytes after transplantation into infarcted heart of syngeneic recipients. PLoS One 2014; 9(9): e107363, http://dx.doi.org/10.1371/journal.pone.0107363.
  42. Komarova S., Kawakami Y., Stoff-Khalili M.A., Curiel D.T., Pereboeva L. Mesenchymal progenitor cells as cellular vehicles for delivery of oncolytic adenoviruses. Mol Cancer Ther 2006; 5(3): 755–766, http://dx.doi.org/10.1158/1535-7163.mct-05-0334.
  43. Klopp A.H., Spaeth E.L., Dembinski J.L., Woodward W.A., Munshi A., Meyn R.E., Cox J.D., Andreeff M., Marini F.C. Tumor irradiation increases the recruitment of circulating mesenchymal stem cells into the tumor microenvironment. Cancer Res 2007; 67(24): 11687–11695, http://dx.doi.org/10.1158/0008-5472.CAN-07-1406.
  44. Kidd S., Spaeth E., Dembinski J.L., Dietrich M., Watson K., Klopp A., Battula V.L., Weil M., Andreeff M., Marini F.C. Direct evidence of mesenchymal stem cell tropism for tumor and wounding microenvironments using in vivo bioluminescent imaging. Stem Cells 2009; 27(10): 2614–2623, http://dx.doi.org/10.1002/stem.187.
  45. Spaeth E.L., Dembinski J.L., Sasser A.K., Watson K., Klopp A., Hall B., Andreeff M., Marini F. Mesenchymal stem cell transition to tumor-associated fibroblasts contributes to fibrovascular network expansion and tumor progression. PLoS One 2009; 4(4): e4992, http://dx.doi.org/10.1371/journal.pone.0004992.
  46. Kéramidas M., Fraipont F., Karageorgis A., Moisan A., Persoons V., Richard M.-J., Coll J.-L., Rome C. The dual effect of mesenchymal stem cells on tumour growth and tumour angiogenesis. Stem Cell Res Ther 2013; 4(2): 41, http://dx.doi.org/10.1186/scrt195.
  47. Miraglia L., King F., Damoiseaux R. Seeing the light: luminescent reporter gene assays. Comb Chem High Throughput Screen 2011; 14(8): 648–657, http://dx.doi.org/10.2174/138620711796504389.
  48. Руководство по оптической когерентной томографии. Под ред. Гладковой Н.Д., Шаховой Н.Д., Сергеева А.М. М: Физматлит, Медкнига; 2007; 296 с.
  49. Cimalla P., Werner T., Winkler K., Mueller C., Wicht S., Gaertner M., Mehner M., Walther J., Rellinghaus B., Wittig D., Karl M.O., Ader M., Funk R.H., Koch E. Imaging of nanoparticle-labeled stem cells using magnetomotive optical coherence tomography, laser speckle reflectometry, and light microscopy. J Biomed Opt 2015; 20(3): 036018, http://dx.doi.org/10.1117/1.JBO.20.3.036018.
  50. Laver C.R.J., Metcalfe A.L., Szczygiel L., Yanai A., Sarunic M.V., Gregory-Evans K. Bimodal in vivo imaging provides early assessment of stem-cell-based photoreceptor engraftment. Eye (Lond) 2015; 29(5): 681–690, http://dx.doi.org/10.1038/eye.2015.24.
  51. Zhou X., Sun J., Yuan H., Wu D., Zhou X., Sun D., Li H., Shao Z., Zhang Z. A rat model for studying neural stem cell transplantation. Acta Pharmacol Sin 2009; 30(11): 1496–1504, http://dx.doi.org/10.1038/aps.2009.151.
  52. Liu G., Wang Z., Lu J., Xia C., Gao F., Gong Q., Song B., Zhao X., Shuai X., Chen X., Ai H., Gu Z. Low molecular weight alkyl-polycation wrapped magnetite nanoparticle clusters as MRI probes for stem cell labeling and in vivo imaging. Biomaterials 2011; 32(2): 528–537, http://dx.doi.org/10.1016/j.biomaterials.2010.08.099.
  53. Rudelius M., Daldrup-Link H.E., Heinzmann U., Piontek G., Settles M., Link T.M., Schlegel J. Highly efficient paramagnetic labelling of embryonic and neuronal stem cells. Eur J Nucl Med Mol Imaging 2003; 30(7): 1038–1044, http://dx.doi.org/10.1007/s00259-002-1110-0.
  54. Kim K.S., Park W., Na K. Gadolinium-chelate nanoparticle entrapped human mesenchymal stem cell via photochemical internalization for cancer diagnosis. Biomaterials 2015; 36: 90–97, http://dx.doi.org/10.1016/j.biomaterials.2014.09.014.
  55. Liu Y., He Z.J., Xu B., Wu Q.Z., Liu G., Zhu H., Zhong Q., Deng D.Y., Ai H., Yue Q., Wei Y., Jun S., Zhou G., Gong Q.Y. Evaluation of cell tracking effects for transplanted mesenchymal stem cells with jetPEI/Gd-DTPA complexes in animal models of hemorrhagic spinal cord injury. Brain Res 2011; 1391: 24–35, http://dx.doi.org/10.1016/j.brainres.2011.03.032.
  56. Lin G., Zhu W., Yang L., Wu J., Lin B., Xu Y., Cheng Z., Xia C., Gong Q., Song B., Ai H. Delivery of siRNA by MRI-visible nanovehicles to overcome drug resistance in MCF-7/ADR human breast cancer cells. Biomaterials 2014; 35(35): 9495–9507, http://dx.doi.org/10.1016/j.biomaterials.2014.07.049.
  57. Tseng C.L., Shih I.L., Stobinski L., Lin F.H. Gadolinium hexanedione nanoparticles for stem cell labeling and tracking via magnetic resonance imaging. Biomaterials 2010; 31(20): 5427–5435, http://dx.doi.org/10.1016/j.biomaterials.2010.03.049.
  58. Arbab A.S., Liu W., Frank J.A. Cellular magnetic resonance imaging: current status and future prospects. Expert Rev Med Devices 2006; 3(4): 427–439, http://dx.doi.org/10.1586/17434440.3.4.427.
  59. Wang Y.X., Hussain S.M., Krestin G.P. Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging. Eur Radiol 2001; 11(11): 2319–2331, http://dx.doi.org/10.1007/s003300100908.
  60. Bull E., Madani S.Y., Sheth R., Seifalian A., Green M., Seifalian A.M. Stem cell tracking using iron oxide nanoparticles. Int J Nanomedicine 2014; 9(1): 1641–1653, http://dx.doi.org/10.2147/IJN.S48979.
  61. Yang C.Y., Tai M.F., Chen S.T., Wang Y.T., Chen Y.F., Hsiao J.K., Wang J.L., Liu H.M. Labeling of human mesenchymal stem cell: сomparison between paramagnetic and superparamagnetic agents. J Appl Phy 2009; 105: 07B314, http://dx.doi.org/10.1063/1.3072821.
  62. Azzabi F., Rottmar M., Jovaisaite V., Rudin M., Sulser T., Boss A., Eberli D. Viability, differentiation capacity, and detectability of super-paramagnetic iron oxide-labeled muscle precursor cells for MRI. Tissue Eng Part C Methods 2015; 21(2): 182–191, http://dx.doi.org/10.1089/ten.TEC.2014.0110.
  63. Ward K.M., Aletras A.H., Balaban R.S. A new class of contrast agents for MRI based on proton chemical exchange dependent saturation transfer (CEST). J Magn Reson 2000; 143(1): 79–87, http://dx.doi.org/10.1006/jmre.1999.1956.
  64. Aime S., Carrera C., Castelli D.D., Crich S.G., Terreno E. Tunable imaging of cells labeled with MRI-PARACEST agents. Angew Chem Int Ed Engl 2005; 44(12): 1813–1815, http://dx.doi.org/10.1002/anie.200462566.
  65. Zhang S., Merritt M., Woessner D.E., Lenkinski R.E., Sherry A.D. PARACEST agents: modulating MRI contrast via water proton exchange. Acc Chem Res 2003; 36(10): 783–790, http://dx.doi.org/10.1021/ar020228m.
  66. Kircher M.F., Gambhir S.S., Grimm J. Noninvasive cell-tracking methods. Nat Rev Clin Oncol 2011; 8(11): 677–688, http://dx.doi.org/10.1038/nrclinonc.2011.141.
  67. Trattnig S., Pinker K., Ba-Ssalamah A., Nöbauer-Huhmann I.M. The optimal use of contrast agents at high field MRI. Eur Radiol 2006; 16(6): 1280–1287, http://dx.doi.org/10.1007/s00330-006-0154-0.
  68. Reagan M.R., Kaplan D.L. Concise review: Mesenchymal stem cell tumor-homing: detection methods in disease model systems. Stem cells 2011; 29(6): 920–927, http://dx.doi.org/10.1002/stem.645.
  69. Guzman R., Uchida N., Bliss T.M., He D., Christopherson K., Stellwagen D., Capela A., Greve J., Malenka R.C., Moseley M.E., Palmer T.D., Steinberg G.K. Long-term monitoring of transplanted human neural stem cells in developmental and pathological contexts with MRI. Proc Natl Acad Sci USA 2007; 104(24): 10211–10216, http://dx.doi.org/10.1073/pnas.0608519104.
  70. Anderson S.A., Glod J., Arbab A.S., Noel M., Ashari P., Fine H.A., Frank J.A. Noninvasive MR imaging of magnetically labeled stem cells to directly identify neovasculature in a glioma model. Blood 2005; 105(1): 420–425, http://dx.doi.org/10.1182/blood-2004-06-2222.
  71. Loebinger M.R., Kyrtatos P.G., Turmaine M., Price A.N., Pankhurst Q., Lythgoe M.F., Janes S.M. Magnetic resonance imaging of mesenchymal stem cells homing to pulmonary metastases using biocompatible magnetic nanoparticles. Cancer Res 2009; 69(23): 8862–8867, http://dx.doi.org/10.1158/0008-5472.CAN-09-1912.
  72. Daadi M.M., Li Z., Arac A., Grueter B.A., Sofilos M., Malenka R.C., Wu J.C., Steinberg G.K. Molecular and magnetic resonance imaging of human embryonic stem cell-derived neural stem cell grafts in ischemic rat brain. Mol Ther 2009; 17(7): 1282–1291, http://dx.doi.org/10.1038/mt.2009.104.
  73. Loebinger M.R., Janes S.M. Stem cells as vectors for antitumour therapy. Thorax 2010; 65(4): 362–369, http://dx.doi.org/10.1136/thx.2009.128025.
  74. Watada Y., Yamashita D., Toyoda M., Tsuchiya K., Hida N., Tanimoto A., Ogawa K., Kanzaki S., Umezawa A. Magnetic resonance monitoring of superparamagnetic iron oxide (SPIO)-labeled stem cells transplanted into the inner ear. Neurosci Res 2015; 95: 21–26, http://dx.doi.org/10.1016/j.neures.2015.01.010.
  75. Geng K., Yang Z.X., Huang D., Yi M., Jia Y., Yan G., Cheng X., Wu R. Tracking of mesenchymal stem cells labeled with gadolinium diethylenetriamine pentaacetic acid by 7T magnetic resonance imaging in a model of cerebral ischemia. Mol Med Rep 2015; 11(2): 954–960, http://dx.doi.org/10.3892/mmr.2014.2805.
  76. Cao L., Li B., Yi P., Zhang H., Dai J., Tan B., Deng Z. The interplay of T1- and T2-relaxation on T1-weighted MRI of hMSCs induced by Gd-DOTA-peptides. Biomaterials 2014; 35(13): 4168–4174, http://dx.doi.org/10.1016/j.biomaterials.2014.01.073.
  77. McMahon M.T., Chan K.W. Developing MR probes for molecular imaging. Adv Cancer Res 2014; 124: 297–327, http://dx.doi.org/10.1016/B978-0-12-411638-2.00009-4.
  78. Song X., Chan K.W., McMahon M.T. Screening of CEST MR contrast agents. Methods Mol Biol 2011; 771: 171–187, http://dx.doi.org/10.1007/978-1-61779-219-9_9.
  79. Liang Y., Bar-Shir A., Song X., Gilad A.A., Walczak P., Bulte J.W. Label-free imaging of gelatin-containing hydrogel scaffolds. Biomaterials 2015; 42: 144–150, http://dx.doi.org/10.1016/j.biomaterials.2014.11.050.
  80. Shin T.H., Choi J.S., Yun S., Kim I.S., Song H.T., Kim Y., Park K.I., Cheon J. T1 and T2 dual-mode MRI contrast agent for enhancing accuracy by engineered nanomaterials. ACS Nano 2014; 8(4): 3393–3401, http://dx.doi.org/10.1021/nn405977t.
  81. Шмидт В. Оптическая спектроскопия для химиков и биологов. М: Техносфера; 2007; 368 с.
  82. Weaner L.E., Hoerr D.C. Synthesis and application of radioisotopes in pharmaceutical research and development. In: Fundamentals of early clinical drug development: from synthesis design to formulation. Abdel-Magid A.F., Caron S. (editors). New York: Wiley; 2006. p. 189–214, http://dx.doi.org/10.1002/0470043407.ch11.
  83. Mirshojaei S.F., Ahmadi A., Morales-Avila E., Ortiz-Reynoso M., Reyes-Perez H. Radiolabelled nanoparticles: novel classification of radiopharmaceuticals for molecular imaging of cancer. J Drug Target 2015; Jun 10: 1–11, http://dx.doi.org/10.3109/1061186X.2015.1048516 [Epub ahead of print].
  84. Hong H., Yang Y., Zhang Y., Cai W. Non-invasive cell tracking in cancer and cancer therapy. Curr Top Med Chem 2010; 10(12): 1237–1248, http://dx.doi.org/10.2174/156802610791384234.
  85. Patriarca F., Carobolante F., Zamagni E., Montefusco V., Bruno B., Englaro E., Nanni C., Geatti O., Isola M., Sperotto A., Buttignol S., Stocchi R., Corradini P., Cavo M., Fanin R. The role of positron emission tomography with 18F-fluorodeoxyglucose integrated with computed tomography in the evaluation of patients with multiple myeloma undergoing allogeneic stem cell transplantation. Biol Blood Marrow Transplant 2015; 21(6): 1068–1073, http://dx.doi.org/10.1016/j.bbmt.2015.03.001.
  86. Detante O., Moisan A., Dimastromatteo J., Richard M.J., Riou L., Grillon E., Barbier E., Desruet M.D., De Fraipont F., Segebarth C., Jaillard A., Hommel M., Ghezzi C., Remy C. Intravenous administration of 99mTc-HMPAO-labeled human mesenchymal stem cells after stroke: in vivo imaging and biodistribution. Cell Transplant 2009; 18(12): 1369–1379, http://dx.doi.org/10.3727/096368909X474230.
  87. Kraitchman D.L., Bulte J.W. In vivo imaging of stem cells and beta cells using direct cell labeling and reporter gene methods. Arterioscler Thromb Vasc Biol 2009; 29: 1025–1030, http://dx.doi.org/10.1161/ATVBAHA.108.165571.
  88. Tjuvajev J.G., Doubrovin M., Akhurst T., Cai S., Balatoni J., Alauddin M.M., Finn R., Bornmann W., Thaler H., Conti P.S., Blasberg R.G. Comparison of radiolabeled nucleoside probes (FIAU, FHBG, and FHPG) for PET imaging of HSV1-tk gene expression. J Nucl Med 2002; 43(8): 1072–1083.
  89. Kang K.W., Min J.J., Chen X., Gambhir S.S. Comparison of [14C]FMAU, [3H]FEAU, [14C]FIAU, and [3H]PCV for monitoring reporter gene expression of wild type and mutant herpes simplex virus type 1 thymidine kinase in cell culture. Mol Imaging Biol 2005; 7(4): 296–303, http://dx.doi.org/10.1007/s11307-005-0010-7.
  90. Mirpour S., Gholamrezanezhad A. Clinical stem cell imaging and in vivo tracking. In: Stem cells in clinic and research. Gholamrezanezhad А. (editor). InTech; 2011; р. 637–656, http://dx.doi.org/10.5772/17821.
  91. Yao J., Xia J., Wang L.V. Multiscale functional and molecular photoacoustic tomography. Ultrason Imaging 2015, http://dx.doi.org/10.1177/0161734615584312 [Epub ahead of print].
  92. Wang L.V. Multiscale photoacoustic microscopy and computed tomography. Nat Photonics 2009; 3(9): 503–509, http://dx.doi.org/10.1038/nphoton.2009.157.
  93. Liu J., Tang Z., Wu Y., Wang Y. Rapid and noncontact photoacoustic tomography imaging system using an interferometer with high-speed phase modulation technique. Rev Sci Instrum 2015; 86(4): 044904, http://dx.doi.org/10.1063/1.4918801.
  94. Xu M.H., Wang L.V. Photoacoustic imaging in biomedicine. Rev Sci Instrum 2006; 77(4): 041101, http://dx.doi.org/10.1063/1.2195024.
  95. Wang L.V. Prospects of photoacoustic tomography. Med Phys 2008; 35(12): 5758–5767, http://dx.doi.org/10.1118/1.3013698.
  96. Li R., Phillips E., Wang P., Goergen C.J., Cheng J.-X. Label-free in vivo imaging of peripheral nerve by multispectral photoacoustic tomography. J Biophoton 2015, http://dx.doi.org/10.1002/jbio.201500004.
  97. Maslov K., Zhang H.F., Hu S., Wang L.V. Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries. Opt Lett 2008; 33(9): 929–931, http://dx.doi.org/10.1364/OL.33.000929.
  98. Wang L., Maslov K., Wang L.V. Single-cell label-free photoacoustic flowoxigraphy in vivo. Proc Natl Acad Sci USA 2013; 110(15): 5759–5764, http://dx.doi.org/10.1073/pnas.1215578110.
  99. Zhang Y., Cai X., Wang Y., Zhang C., Li L., Choi S.-W., Wang L.V., Xia Y. Noninvasive photoacoustic microscopy of living cells in two and three dimensions through enhancement by a metabolite dye. Angew Chem Int Ed Engl 2011; 50(32): 7359–7363, http://dx.doi.org/10.1002/anie.201101659.
  100. Sakadžić S., Lee J., Boas D.A., Ayata C. High-resolution in vivo optical imaging of stroke injury andrepair. Brain Res 2015; 1623: 174–172, http://dx.doi.org/10.1016/j.brainres.2015.04.044.
  101. Wu D., Huang L., Jiang M.S., Jiang H. Contrast agents for photoacoustic and thermoacoustic imaging: a review. Int J Mol Sci 2014; 5(12): 23616–23639, http://dx.doi.org/10.3390/ijms151223616.
  102. Ricles L.M., Nam S.Y., Treviсo E.A., Emelianov S.Y., Suggs L.J. A dual gold nanoparticle system for mesenchymal stem cell tracking. J Mater Chem B Mater Biol Med 2014; 2(46): 8220–8230, http://dx.doi.org/10.1039/C4TB00975D.
  103. Nam S.Y., Chung E., Suggs L.J., Emelianov S.Y. Combined ultrasound and photoacoustic imaging to noninvasively assess burn injury and selectively monitor a regenerative tissue-engineered construct. Tissue Eng Part C Methods 2015; 21(6): 557–566, http://dx.doi.org/10.1089/ten.TEC.2014.0306.
  104. Zharov V.P., Galanzha E.I., Shashkov E.V., Kim J.W., Khlebtsov N.G., Tuchin V.V. Photoacoustic flow cytometry: principle and application for real-time detection of circulating single nanoparticles, pathogens, and contrast dyes in vivo. J Biomed Opt 2007; 12(5): 051503, http://dx.doi.org/10.1117/1.2793746.
  105. Galanzha E.I., Zharov V.P. Circulating tumor cell detection and capture by photoacoustic flow cytometry in vivo and ex vivo. Cancers (Basel) 2013; 5(4): 1691–1738, http://dx.doi.org/10.3390/cancers5041691.
  106. Cao F., Drukker M., Lin S., Sheikh A.Y., Xie X., Li Z., Connolly A.J., Weissman I.L., Wu J.C. Molecular imaging of embryonic stem cell misbehavior and suicide gene ablation. Cloning Stem Cells 2007; 9(1): 107–117, http://dx.doi.org/10.1089/clo.2006.0e16.
  107. Waerzeggers Y., Klein M., Miletic H., Himmelreich U., Li H., Monfared P., Herrlinger U., Hoehn M., Coenen H.H., Weller M., Winkeler A., Jacobs A.H. Multimodal imaging of neural progenitor cell fate inrodents. Mol Imaging Biol 2008; 7(2): 77–91.
  108. Gaedicke S., Braun F., Prasad S., Machein M., Firat E., Hettich M., Gudihal R., Zhu X., Klingner K., Schüler J., Herold-Mende C.C., Grosu A.L., Behe M., Weber W., Mäcke H., Niedermann G. Noninvasive positron emission tomography and fluorescence imaging of CD133+ tumor stem cells. Proc Natl Acad Sci USA 2014; 111(6): 692–701, http://dx.doi.org/10.1073/pnas.1314189111.
  109. Hung T.C., Suzuki Y., Urashima T., Caffarelli A., Hoyt G., Sheikh A.Y., Yeung A.C., Weissman I., Robbins R.C., Bulte J.W., Yang P.C. Multimodality evaluation of the viability of stem cells delivered into different zones of myocardial infarction. Circ Cardiovasc Imaging 2008; 1(1): 6–13, http://dx.doi.org/10.1161/CIRCIMAGING.108.767343.
  110. De Vocht N., Reekmans K., Bergwerf I., Praet J., Hoornaert C., Le Blon D., Daans J., Berneman Z., Van der Linden A., Ponsaerts P. Multimodal imaging of stem cell implantation in the central nervous system of mice. J Vis Exp 2012; (64): e3906, http://dx.doi.org/10.3791/3906.
  111. Cussó L., Mirones I., Peña-Zalbidea S., García-Vázquez V., García-Castro J., Desco M. Combination of single-photon emission computed tomography and magnetic resonance imaging to track 111in-oxine-labeled human mesenchymal stem cells in neuroblastoma-bearing mice. Mol Imaging 2014; 13: 1–10.
  112. Jackson J., Chapon C., Jones W., Hirani E., Qassim A., Bhakoo K. In vivo multimodal imaging of stem cell transplantation in a rodent model of Parkinson’s disease. J Neurosci Methods 2009; 183(2): 141–148, http://dx.doi.org/10.1016/j.jneumeth.2009.06.022.
  113. Wang H., Cao F., De A., Cao Y., Contag C., Gambhir S.S., Wu J.C., Chen X. Trafficking mesenchymal stem cell engraftment and differentiation in tumor-bearing mice by bioluminescence imaging. Stem Cells 2009; 27(7): 1548–1558, http://dx.doi.org/10.1002/stem.81.
  114. Meleshina A.V., Cherkasova E.I., Shirmanova M.V., Klementieva N.V., Kiseleva E.V., Snopova L.В., Prodanets N.N., Zagaynova E.V. Influence of mesenchymal stem cells on the metastases development in mice in vivo. Stem Cell Res Ther 2015; 6: 15, http://dx.doi.org/10.1186/s13287-015-0003-7.
  115. Повещенко А.Ф., Повещенко О.В., Коненков В.И. Со­вре­менные достижения в создании методов изучения миграции стволовых клеток. Вестник РАМН 2013; 9: 46–51.
Meleshina A.V., Cherkasova E.I., Shirmanova M.V., Khrapichev A.A., Dudenkova V.V., Zagaynova E.V. Modern Techniques for Stem Cells in vivo Imaging (Review). Sovremennye tehnologii v medicine 2015; 7(4): 174, https://doi.org/10.17691/stm2015.7.4.24


Журнал базах данных

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg

SCImago Journal & Country Rank