Непрерывная визуализация P–Q-интервалов в портативных устройствах мониторинга функционального состояния организма человека
Разработан алгоритм анализа длительности P–Q-интервала электрокардиографического (ЭКГ) сигнала, позволяющий производить непрерывную оценку изменения этого показателя и визуализировать данные в удобном для анализа виде.
Цель исследования — повышение точности регистрации P–Q-интервала в условиях нестатической обработки.
Материалы и методы. Исследования проводили с использованием сигналов, полученных с платы собственного комплексного устройства мониторирования, содержащего компоненты регистрации ЭКГ. Реализацию алгоритма осуществляли с использованием программного обеспечения LabView. Производили оценку не только P–Q-интервала, но и таких клинически значимых показателей, как площадь скатерограммы, амплитуда кардиоритмограммы, спектр регистрируемого ЭКГ-сигнала, амплитуда и период дыхательной волны.
Результаты. Предложенные диагностические критерии позволяют анализировать в режиме реального времени с большой точностью не только параметры нормального ЭКГ-сигнала, но и патологические нарушения электрофизиологического предсердно-желудочкового проведения, комплексная оценка которых дает возможность осуществлять поддержку принятия решения при постановке диагноза.
- Бережной В.В., Марушко Т.В. Внезапная смерть при физических нагрузках у детей и подростков. Современная педиатрия 2009; 6(28): 29–34.
- Воробьев Л.В. Индекс PQs, как показатель риска внезапного нарушения ритма сердца при тахикардии. Успехи современного естествознания 2013; 11: 8–13.
- Воробьев Л.В. Укороченный P–Q, акценты ЭКГ диагностики. Современные наукоемкие технологии 2013; 11: 152–157.
- Zimetbaum P.J., Mark E.J. Practical clinical electrophysiology. Lippincott Williams and Wilkins; 2008.
- Котельников В.А. О пропускной способности эфира и проволоки в электросвязи. Всесоюзный энергетический комитет. Материалы к I Всесоюзному съезду по вопросам технической реконструкции дела связи и развития слаботочной промышленности, 1993. Успехи физических наук (репринт) 2006; 176(7): 762–770.
- Bogomolov A.V., Maistrov A.I. Theoretical-experimental analysis of convergence of heart rate variability spectral measures estimated via heart rate and heart period signals. Biomedical Engineering 2009; 43(2): 75–80, http://dx.doi.org/10.1007/s10527-009-9091-y.
- Зарецкий А.П., Кулешов А.П., Алехин М.Д. Анализ вариабельности сердечного ритма пациентов с желудочковыми нарушениями при временной электрокардиостимуляции. В кн.: Материалы Всероссийской научно-практической конференции с международным участием «Вариабельность сердечного ритма: теоретические и прикладные аспекты». Чебоксары; 2014; с. 66–69.
- Kukushkin Y.U., Maistrov A.I., Bogomolov A.V. Rhythmocardiogram approximation methods for calculation of spectral parameters of cardiac rhythm variability. Biomedical Engineering 2010; 44(3): 15–30, http://dx.doi.org/10.1007/s10527-010-9165-x.
- Zaretskiy A.P., Ilyin A.V., Kuleshov A.P., Poteryakhina A.V., Poteryakhin A.V. Features of analysis and daily registration of ECG in patients with paroxysmal atrial fibrillation. Biol Med (Aligarh) 2015; 7(2): BM-098-15.