Сегодня: 21.01.2025
RU / EN
Последнее обновление: 27.12.2024
Иммунотерапия злокачественных новообразований (обзор)

Иммунотерапия злокачественных новообразований (обзор)

Д.В. Южакова, М.В. Ширманова, Т.Ф. Сергеева, Е.В. Загайнова, К.А. Лукьянов
Ключевые слова: злокачественные новообразования; иммунотерапия опухолей; цитокины; вакцины; моноклональные антитела; адаптивная клеточная терапия.
2016, том 8, номер 1, стр. 173.

Полный текст статьи

html pdf
6455
4579

Представлены современные методы иммунотерапии злокачественных новообразований. Рассмотрены основные виды иммунотерапии: активная и пассивная, специфическая и неспецифическая. Активная неспецифическая иммунотерапия опухолей основана на применении цитокинов, некоторых бактериальных продуктов, синтетических молекул и гормонов, активная специфическая — на использовании вакцин на основе опухолеассоциированных либо вирусных антигенов. Основными подходами пассивной неспецифической иммунотерапии являются адаптивная клеточная терапия, а также применение белков теплового шока и лектинов. Пассивная специфическая иммунотерапия основана на введении в организм моноклональных антител. Особое внимание в обзоре уделяется механизмам противоопухолевого действия иммунотерапевтических агентов: влиянию на клетки иммунной системы, продукции цитокинов, а также блокированию прогрессии опухолей. Освещены результаты некоторых предклинических исследований in vitro и in vivo и клинических испытаний различных препаратов. Показана перспективность применения иммунотерапии при лечении злокачественных опухолей.

  1. Baxevanis C.N., Perez S.A., Papamichail M. Cancer immunotherapy. Crit Rev Clin Lab Sci 2009; 46(4): 167–189, http://dx.doi.org/10.1080/10408360902937809.
  2. Zhou J. Advances and prospects in cancer immunotherapy. New Journal of Science 2014; 2014: 1–13, http://dx.doi.org/10.1155/2014/745808.
  3. Raval R.R., Sharabi A.B., Walker A.J., Drake C.G., Sharma P. Tumor immunology and cancer immunotherapy: summary of the 2013 SITC primer. J Immunother Cancer 2014; 2: 14, http://dx.doi.org/10.1186/2051-1426-2-14.
  4. Kim R., Emi M., Tanabe K. Cancer immunoediting from immune surveillance to immune escape. Immunology 2007; 121(1): 1–14, http://dx.doi.org/10.1111/j.1365-2567.2007.02587.x.
  5. Töpfer K., Kempe S., Müller N., Schmitz M., Bachmann M., Cartellieri M., Schackert G., Temme A. Tumor evasion from T cell surveillance. J Biomed Biotechnol 2011; 2011: 918471, http://dx.doi.org/10.1155/2011/918471.
  6. Drake C.G., Jaffee E., Pardoll D.M. Mechanisms of immune evasion by tumors. Adv Immunol 2006; 90: 51–81, http://dx.doi.org/10.1016/s0065-2776(06)90002-9.
  7. Gajewski T.F., Schreiber H., Fu Y.-X. Innate and adaptive immune cells in the tumor microenvironment. Nat Immunol 2013; 14: 1014–1022, http://dx.doi.org/10.1038/ni.2703.
  8. Ochsenbein A., Sierro S., Odermatt B., Pericin M., Karrer U., Hermans J., Hemmi S., Hengartner H., Zinkernagel R.M. Roles of tumour localization; second signals and cross priming in cytotoxic T-cell induction. Nature 2001; 411(6841): 1058–1064, http://dx.doi.org/10.1038/35082583.
  9. Zamarron B.F., Chen W. Dual roles of immune cells and their factors in cancer development and progression. Int J Biol Sci 2011; 7(5): 651–658, http://dx.doi.org/10.7150/ijbs.7.651.
  10. Hassan M., Watari H., AbuAlmaaty A., Ohba Y., Sakuragi N. Apoptosis and molecular targeting therapy in cancer. Biomed Res Int 2014; 2014: 150845, http://dx.doi.org/10.1155/2014/150845.
  11. Igney F.H., Krammer P.H. Immune escape of tumors: apoptosis resistance and tumor counterattack. J Leukoc Biol 2002; 71(6): 907–920.
  12. Zou W. Regulatory T cells, tumour immunity and immunotherapy. Nat Rev Immunol 2006; 6(4): 295–307, http://dx.doi.org/10.1038/nri1806.
  13. Nishikawa H., Sakaguchi S. Regulatory T cells in tumor immunity. Int J Cancer 2010; 127(4): 759–767, http://dx.doi.org/10.1002/ijc.25429.
  14. Katoh H., Watanabe M. Myeloid-derived suppressor cells and therapeutic strategies in cancer. Mediators Inflamm 2015; 2015: 159269, http://dx.doi.org/10.1155/2015/159269.
  15. Van Baren N., Van den Eynde B.J. Tryptophan-degrading enzymes in tumoral immune resistance. Front Immunol 2015; 6: 34, http://dx.doi.org/10.3389/fimmu.2015.00034.
  16. Platten M., Wick W., Van den Eynde B.J. Tryptophan catabolism in cancer: beyond IDO and tryptophan depletion. Cancer Res 2012; 72(21): 5435–5440, http://dx.doi.org/10.1158/0008-5472.CAN-12-0569.
  17. Lee S., Margolin K. Cytokines in cancer immunotherapy. Cancers 2011; 3: 3856–3893, http://dx.doi.org/10.3390/cancers3043856.
  18. Dranoff G. Cytokines in cancer pathogenesis and cancer therapy. Nat Rev Cancer 2004; 4(1): 11–22, http://dx.doi.org/10.1038/nrc1252.
  19. Hemmerle T., Neri D. The antibody-based targeted delivery of interleukin-4 and 12 to the tumor neovasculature eradicates tumors in three mouse models of cancer. Int J Cancer 2014; 134(2): 467–477, http://dx.doi.org/10.1002/ijc.28359.
  20. Elias E.G., Zapas J.L., McCarron E.C., Beam S.L., Hasskamp J.H., Culpepper W.J. Sequential administration of GM-CSF (Sargramostim) and IL-2 ± autologous vaccine as adjuvant therapy in cutaneous melanoma: an interim report of a phase II clinical trial. Cancer Biother Radiopharm 2008; 23(3): 285–291, http://dx.doi.org/10.1089/cbr.2007.0438.
  21. Atkins M.B., Kunkel L., Sznol M., Rosenberg S.A. High-dose recombinant interleukin-2 therapy in patients with metastatic melanoma: long-term survival update. Cancer J Sci Am 2000; 6(Suppl 1): S11–S14.
  22. Gollob J.A., Mier J.W., Veenstra K., McDermott D.F., Clancy D., Clancy M., Atkins M.B. Phase I trial of twice-weekly intravenous interleukin 12 in patients with metastatic renal cell cancer or malignant melanoma: ability to maintain IFN-gamma induction is associated with clinical response. Clin Cancer Res 2000; 6(5): 1678–1692.
  23. Kirkwood J. Cancer immunotherapy: the interferon-alpha experience. Semin Oncol 2002; 29(3 Suppl 7): 18–26, http://dx.doi.org/10.1053/sonc.2002.33078.
  24. Bogdanov K.V., Frolova O.I., Marinetz O.V., Ogorodnikova Y.S., Afanasiev B.V., Zaritskii A.Y. The efficacy of interferon-α therapy in Ph-positive chronic myeloid leukemia. Vopr Onkol 2003; 49(2): 189–192.
  25. Borrello I.M., Levitsky H.I., Stock W., Sher D., Qin L., DeAngelo D.J., Alyea E.P., Stone R.M., Damon L.E., Linker C.A., Maslyar D.J., Hege K.M. Granulocyte-macrophage colony-stimulating factor (GM-CSF)-secreting cellular immunotherapy in combination with autologous stem cell transplantation (ASCT) as postremission therapy for acute myeloid leukemia (AML). Blood 2009; 114(9): 1736–1745, http://dx.doi.org/10.1182/blood-2009-02-205278.
  26. Colombo M.P., Trinchieri G. Interleukin-12 in anti-tumor immunity and immunotherapy. Cytokine Growth Factor Rev 2002; 13(2): 155–168, http://dx.doi.org/10.1016/S1359-6101(01)00032-6.
  27. Mocellin S., Rossi C.R., Pilati P., Nitti D. Tumor necrosis factor, cancer and anticancer therapy. Cytokine Growth Factor Rev 2005; 16(1): 35–53, http://dx.doi.org/10.1016/j.cytogfr.2004.11.001.
  28. Ningrum R.A. Human interferon alpha-2b: a therapeutic protein for cancer treatment. Scientifica 2014; 2014: 970315, http://dx.doi.org/10.1155/2014/970315.
  29. Liu P., Zhang C., Chen J., Zhang R., Ren J., Huang Y., Zhu F., Li Z., Wu G. Combinational therapy of interferon-α and chemotherapy normalizes tumor vasculature by regulating pericytes including the novel marker RGS5 in melanoma. J Immunother 2011; 34(3): 320–326, http://dx.doi.org/10.1097/CJI.0b013e318213cd12.
  30. Kaufman H.L., Ruby C.E., Hughes T., Slingluff C.L. Current status of granulocyte-macrophage colony-stimulating factor in the immunotherapy of melanoma. J Immunother Cancer 2014; 2(1): 11, http://dx.doi.org/10.1186/2051-1426-2-11.
  31. Rosenberg S.A. IL-2: the first effective immunotherapy for human cancer. J Immunol 2014; 192(12): 5451–5458, http://dx.doi.org/10.4049/jimmunol.1490019.
  32. Mocellin S., Pasquali S., Rossi C.R., Nitti D. Interferon alpha adjuvant therapy in patients with high-risk melanoma: a systematic review and meta-analysis. J Natl Cancer Inst 2010; 102(7): 493–501, http://dx.doi.org/10.1093/jnci/djq009.
  33. Sim G.C., Radvanyi L. The IL-2 cytokine family in cancer immunotherapy. Cytokine Growth Factor Rev 2014; 25(4): 377–390, http://dx.doi.org/10.1016/j.cytogfr.2014.07.018.
  34. Stewart J.H., Levine E.A. Role of bacillus Calmette-Guérin in the treatment of advanced melanoma. Expert Rev Anticancer Ther 2011; 11(11): 1671–1676, http://dx.doi.org/10.1586/era.11.163.
  35. Kidner T.B., Morton D.L., Lee D.J., Hoban M., Foshag L.J., Turner R.R., Faries M.B. Combined intralesional Bacille Calmette-Guйrin (BCG) and topical imiquimod for in-transit melanoma. J Immunother 2012; 35(9): 716–720, http://dx.doi.org/10.1097/CJI.0b013e31827457bd.
  36. Сафиуллин К.Н., Карякин О.Б. Отдаленные результаты лечения рецидивов поверхностного рака мочевого пузыря вакциной БЦЖ «Имурон». Онкоурология 2006; 2: 40–43.
  37. Ogawa C., Liu Y.J., Kobayashi K.S. Muramyl dipeptide and its derivatives: peptide adjuvant in immunological disorders and cancer therapy. Curr Bioact Compd 2011; 7(3): 180–197, http://dx.doi.org/10.2174/157340711796817913.
  38. Li X., Yu J., Xu S., Wang N., Yang H., Yan Z., Cheng G., Liu G. Chemical conjugation of muramyl dipeptide and paclitaxel to explore the combination of immunotherapy and chemotherapy for cancer. Glycoconj J 2008; 25(5): 415–425, http://dx.doi.org/10.1007/s10719-007-9095-3.
  39. Radovic-Moreno A.F., Chernyak N., Mader C.C., Nallagatla S., Kang R.S., Hao L., Walker D.A., Halo T.L., Merkel T.J., Rische C.H., Anantatmula S., Burkhart M., Mirkin C.A., Gryaznov S.M. Immunomodulatory spherical nucleic acids. Proc Natl Acad Sci USA 2015; 112(13): 3892–3897, http://dx.doi.org/10.1073/pnas.1502850112.
  40. Jansa P., Holý A., Dračínský M., Kolman V., Janeba Z., Kmoníčková E., Zídek Z. Synthesis and structure — activity relationship studies of polysubstituted pyrimidines as inhibitors of immune-activated nitric oxide production. Med Chem Res 2015; 24(5): 2154–2166, http://dx.doi.org/10.1007/s00044-014-1285-5.
  41. Bodey B., Bodey B.Jr., Siegel S.E., Kaiser H.E. Review of thymic hormones in cancer diagnosis and treatment. Int J Immunopharmacol 2000; 22(4): 261–273, http://dx.doi.org/10.1016/S0192-0561(99)00084-3.
  42. Sungarian A., Cielo D., Sampath P., Bowling N., Moskal P., Wands J.R., de la Monte S.M. Potential role of thymosin-α1 adjuvant therapy for glioblastoma. J Oncol 2009; 2009: 302084, http://dx.doi.org/10.1155/2009/302084.
  43. Garaci E., Pica F., Serafino A., Balestrieri E., Matteucci C., Moroni G., Sorrentino R., Zonfrillo M., Pierimarchi P., Sinibaldi-Vallebona P. Thymosin α1 and cancer: action on immune effector and tumor target cells. Ann NY Acad Sci 2012; 1269: 26–33, http://dx.doi.org/10.1111/j.1749-6632.2012.06697.x.
  44. Schlom J. Therapeutic cancer vaccines: current status and moving forward. J Natl Cancer Inst 2012; 104(8): 599–613, http://dx.doi.org/10.1093/jnci/djs033.
  45. Rosenberg S.A., Yang J.C., Restifo N.P. Cancer immunotherapy: moving beyond current vaccines. Nat Med 2004; 10(9): 909–915, http://dx.doi.org/10.1038/nm1100.
  46. Emens L.A. Cancer vaccines: on the threshold of success. Expert Opin Emerg Drugs 2008; 13(2): 295–308, http://dx.doi.org/10.1517/14728214.13.2.295.
  47. Lollini P.L., Cavallo F., Nanni P., Quaglino E. The promise of preventive cancer vaccines. Vaccines 2015; 3(2): 467–489, http://dx.doi.org/10.3390/vaccines3020467.
  48. Klebanoff C.A., Acquavella N., Yu Z., Restifo N.P. Therapeutic cancer vaccines: are we there yet? Immunol Rev 2011; 239(1): 27–44, http://dx.doi.org/10.1111/j.1600-065X.2010.00979.x.
  49. Dochez C., Bogers J.J., Verhelst R., Rees H. HPV vaccines to prevent cervical cancer and genital warts: an update. Vaccine 2014; 32(14): 1595–1601, http://dx.doi.org/10.1016/j.vaccine.2013.10.081.
  50. Lowy D.R., Schiller J.T. Prophylactic human papillomavirus vaccines. J Clin Invest 2006; 116(5): 1167–1173, http://dx.doi.org/10.1172/JCI28607.
  51. Lim E.J., Torresi J. Prevention of hepatitis C virus infection and liver cancer. Recent Results Cancer Res 2014; 193: 113–133, http://dx.doi.org/10.1007/978-3-642-38965-8_7.
  52. Chang M.H. Hepatitis B virus and cancer prevention. Recent Results Cancer Res 2011; 188: 75–84, http://dx.doi.org/10.1007/978-3-642-10858-7_6.
  53. Vockerodt M., Yap L.F., Shannon-Lowe C., Curley H., Wei W., Vrzalikova K., Murray P.G. The Epstein–Barr virus and the pathogenesis of lymphoma. J Pathol 2015; 235(2): 312–322, http://dx.doi.org/10.1002/path.4459.
  54. Mahieux R., Gessain A. Adult T-cell leukemia/lymphoma and HTLV-1. Curr Hematol Malig Rep 2007; 2(4): 257–264, http://dx.doi.org/10.1007/s11899-007-0035-x.
  55. Kaplan L.D. Human herpesvirus-8: Kaposi sarcoma, multicentric Castleman disease, and primary effusion lymphoma. Hematology Am Soc Hematol Educ Program 2013; 2013: 103–108, http://dx.doi.org/10.1182/asheducation-2013.1.103.
  56. Chiang C.L., Coukos G., Kandalaft L.E. Whole tumor antigen vaccines: where are we? Vaccines 2015; 3(2): 344–372, http://dx.doi.org/10.3390/vaccines3020344.
  57. Sioud M. An overview of the immune system and technical advances in tumor antigen discovery and validation. Methods Mol Biol 2007; 360: 277–318, http://dx.doi.org/10.1385/1-59745-165-7:277.
  58. Peoples G.E., Gurney J.M., Hueman M.T., Woll M.M., Ryan G.B., Storrer C.E., Fisher C., Shriver C.D., Ioannides C.G., Ponniah S. Clinical trial results of a HER2/neu (E75) vaccine to prevent recurrence in high-risk breast cancer patients. J Clin Oncol 2005; 23(30): 7536–7545, http://dx.doi.org/10.1200/JCO.2005.03.047.
  59. Mittendorf E.A., Clifton G.T., Holmes J.P., Clive K.S., Patil R., Benavides L.C., Gates J.D., Sears A.K., Stojadinovic A., Ponniah S., Peoples G.E. Clinical trial results of the HER-2/neu (E75) vaccine to prevent breast cancer recurrence in high-risk patients. From US Military Cancer Institute Clinical Trials Group Study I-01 and I-02. Cancer 2012; 118(10): 2594–2602, http://dx.doi.org/10.1002/cncr.26574.
  60. Grossardt C., Engeland C.E., Bossow S., Halama N., Zaoui K. Leber M.F., Springfeld C., Jaeger D., von Kalle C., Ungerechts G. Granulocyte-macrophage colony-stimulating factor-armed oncolytic measles virus is an effective therapeutic cancer vaccine. Human Gene Therapy 2013; 24(7): 644–654, http://dx.doi.org/10.1089/hum.2012.205.
  61. Liu T.Y., Hussein W.M., Jia Z., Ziora Z.M., McMillan N.A., Monteiro M.J., Toth I., Skwarczynski M. Self-adjuvanting polymer-peptide conjugates as therapeutic vaccine candidates against cervical Cancer. Biomacromolecules 2013, 14(8): 2798–2806, http://dx.doi.org/10.1021/bm400626w.
  62. Yin W., He Q., Hu Z., Chen Z., Qifeng M., Zhichun S., Zhihui Q., Xiaoxia N., Li J., Gao J. A novel therapeutic vaccine of GM-CSF/TNFalpha surface-modified RM-1 cells against the orthotopic prostatic cancer. Vaccine 2010; 28(31): 4937–4944, http://dx.doi.org/10.1016/j.vaccine.2010.05.038.
  63. Lai S., Huang Z., Guo Y., Cui Y., Wang L., Ren W., Ying F., Gao H., He L., Zhou T., Jiang J., Gao J. Evaluation of hGM-CSF/hTNFα surface-modified prostate cancer therapeutic vaccine in the huPBL-SCID chimeric mouse model. J Hematol Oncol 2015; 8: 76, http://dx.doi.org/10.1186/s13045-015-0175-8.
  64. Schwartzentruber D.J., Lawson D.H., Richards J.M., Conry R.M., Miller D.M., Treisman J., Gailani F., Riley L., Conlon K., Pockaj B., Kendra K.L., White R.L., Gonzalez R., Kuzel T.M., Curti B., Leming P.D., Whitman E.D., Balkissoon J., Reintgen D.S., Kaufman H., Marincola F.M., Merino M.J., Rosenberg S.A., Choyke P., Vena D., Hwu P. gp100 peptide vaccine and interleukin-2 in patients with advanced melanoma. N Engl J Med 2011; 364(22): 2119–2127, http://dx.doi.org/10.1056/NEJMoa1012863.
  65. Scheibenbogen C., Schmittel A., Keilholz U., Allgäuer T., Hofmann U., Max R., Thiel E., Schadendorf D. Phase 2 trial of vaccination with tyrosinase peptides and granulocyte-macrophage colony-stimulating factor in patients with metastatic melanoma. J Immunother 2000; 23(2): 275–281, http://dx.doi.org/10.1097/00002371-200003000-00012.
  66. Anguille S., Smits E.L., Lion E., van Tendeloo V.F., Berneman Z.N. Clinical use of dendritic cells for cancer therapy. Lancet Oncol 2014; 15(7): e257–267, http://dx.doi.org/10.1016/S1470-2045(13)70585-0.
  67. Palucka K., Banchereau J. Cancer immunotherapy via dendritic cells. Nat Rev Cancer 2012; 12: 265–277, http://dx.doi.org/10.1038/nrc3258.
  68. Gonzalez G., Crombet T., Lage A. Chronic vaccination with a therapeutic EGF-based cancer vaccine: a review of patients receiving long lasting treatment. Current Cancer Drug Targets 2011; 11(1): 103–110, http://dx.doi.org/10.2174/156800911793743583.
  69. Liu J.K.H. Anti-cancer vaccines — a one-hit wonder? Yale J Biol Med 2014; 87(4): 481–489.
  70. Cheever M.A., Higano C.S. PROVENGE (Sipuleucel-T) in prostate cancer: the first FDA-approved therapeutic cancer vaccine. Clin Cancer Res 2011; 17(11): 3520–3526, http://dx.doi.org/10.1158/1078-0432.CCR-10-3126.
  71. Restifo N.P., Dudley M.E., Rosenberg S.A. Adoptive immunotherapy for cancer: harnessing the T cell response. Nat Rev Immunol 2012; 12(4): 269–281, http://dx.doi.org/10.1038/nri3191.
  72. Li Y., Huang Q., Zhong Y., Wang A., Sun J., Zhou J. Prospects in adoptive cell transfer therapy for cancer. J Immunol Clin Res 2013; 1: 1008.
  73. Rayner A.A., Grimm E.A., Lotze M.T., Chu E.W., Rosenberg S.A. Lymphokine-activated killer (LAK) cells. Analysis of factors relevant to the immunotherapy of human cancer. Cancer 1985; 55(6): 1327–1333, http://dx.doi.org/10.1002/1097-0142(19850315)55:61327::aid-cncr28205506283.0.co;2-o.
  74. Wang F.S., Liu M.X., Zhang B., Shi M., Lei Z.Y., Sun W.B., Du Q.Y., Chen J.M. Antitumor activities of human autologous cytokine-induced killer (CIK) cells against hepatocellular carcinoma cells in vitro and in vivo. World J Gastroenterol 2002; 8(3): 464–468, http://dx.doi.org/10.3748/wjg.v8.i3.464.
  75. Zhu H.H., Xu K.L., Pan X.Y., Liu J.Q., Chen F.X., Huang Y.H. Specific anti-leukemic cell effect mediated by dendritic cells pulsed with chronic myelogenous leukemia lysate antigen in vitro. Zhongguo Shi Yan Xue Ye Xue Za Zhi 2003; 11(3): 278–281.
  76. Wongkajornsilp A., Sangsuriyong S., Hongeng S., Waikakul S., Asavamongkolkul A., Huabprasert S. Effective osteosarcoma cytolysis using cytokine-induced killer cells pre-inoculated with tumor RNA-pulsed dendritic cells. J Orthopaedic Research 2005; 23(6): 1460–1466, http://dx.doi.org/10.1016/j.orthres.2005.03.009.1100230632.
  77. Ge W., Li C.H., Zhang W., Han Q., Deng W.M., Chen L., You S.G., Zhao C.H. Coculture of dendritic cell with cytokine-induced killer results in a significant increase in cytotoxic activity of CIK to tumor cells in vitro and in vivo. Zhonghua Xue Ye Xue Za Zhi 2004; 25(5): 277–280.
  78. Takahashi H., Nakada T., Puisieux I. Inhibition of human colon cancer growth by antibody-directed human LAK cells in SCID mice. Science 1993; 259(5100): 1460–1463, http://dx.doi.org/10.1126/science.8451642.
  79. Deng H. Anti-human lung giant cell cancer (PG) effect of human LAK cells in vitro and in nude mice. Zhonghua Zhong Liu Za Zhi 1990; 12(4): 258–260.
  80. Sacchi M., Vitolo D., Sedlmayr P. Induction of tumor regression in experimental model of human head and neck cancer by human A-LAK cells and IL-2. Int J Cancer 1991; 47(5): 784–791, http://dx.doi.org/10.1002/ijc.2910470527.
  81. Edinger M., Cao Y.A., Verneris M.R., Bachmann M.H., Contag C.H., Negrin R.S. Revealing lymphoma growth and the efficacy of immune cell therapies using in vivo bioluminescence imaging. Blood 2003; 101(2): 640–648, http://dx.doi.org/10.1182/blood-2002-06-1751.
  82. Nishimura R., Baker J., Beilhack A., Zeiser R., Olson J.A., Sega E.I., Karimi M., Negrin R.S. In vivo trafficking and survival of cytokine-induced killer cells resulting in minimal GVHD with retention of antitumor activity. Blood 2008; 112(6): 2563–2574, http://dx.doi.org/10.1182/blood-2007-06-092817.
  83. Yang X.J., Huang J.A., Lei W., Zhu Y.B., Zhang X.G. Antitumor effects of cocultured dendritic cells and cytokine-induced killer cells on lung cancer in vitro and in vivo. Ai Zheng 2006; 25(11): 1329–1333.
  84. Rosenberg S.A., Spiess P., Lafreniere R. A new approach to the adoptive immunotherapy of cancer with tumor-infiltrating lymphocytes. Science 1986; 233(4770): 1318–1321, http://dx.doi.org/10.1126/science.3489291.
  85. Hawkins M.J., Atkins M.B., Dutcher J.P., Fisher R.I., Weiss G.R., Margolin K.A., Rayner A.A., Sznol M., Parkinson D.R., Paietta E., Gaynor E.R., Boldt D.H., Doroshow J.H., Aronson F.R. A phase II clinical trial of interleukin-2 and lymphokine-activated killer cells in advanced colorectal carcinoma. J Immunother Emphasis Tumor Immunol 1994; 15(1): 74–78, http://dx.doi.org/10.1097/00002371-199401000-00010.
  86. Sparano J.A., Fisher R.I., Weiss G.R., Margolin K., Aronson F.R., Hawkins M.J., Atkins M.B., Dutcher J.P., Gaynor E.R., Boldt D.H., Doroshow J.H., Ernest M.L., Sznol M., Mier J.W. Phase II trials of high-dose interleukin-2 and lymphokine-activated killer cells in advanced breast carcinoma and carcinoma of the lung, ovary, and pancreas and other tumors. J Immunother Emphasis Tumor Immunol 1994; 16(3): 216–223, http://dx.doi.org/10.1097/00002371-199410000-00006.
  87. Law T.M., Motzer R.J., Mazumdar M., Sell K.W., Walther P.J., O’Connell M., Khan A., Vlamis V., Vogelzang N.J., Bajorin D.F. Phase III randomized trial of interleukin-2 with or without lymphokine-activated killer cells in the treatment of patients with advanced renal cell carcinoma. Cancer 1995; 76: 824–832, http://dx.doi.org/10.1002/1097-0142(19950901)76:5824::aid-cncr28207605173.0.co;2-n.
  88. Ma Y., Zhang Z., Tang L., Xu Y.C., Xie Z.M., Gu X.F., Wang H.X. Cytokine-induced killer cells in the treatment of patients with solid carcinomas: a systematic reviewand pooled analysis. Cytotherapy 2012; 14(4): 483–493, http://dx.doi.org/10.3109/14653249.2011.649185.
  89. Hontscha C., Borck Y., Zhou H., Messmer D., Schmidt-Wolf I.G.H. Clinical trials on CIK cells: first report of the international registry on CIK cells (IRCC). J Cancer Res Clin Oncol 2011; 137(2): 305–310, http://dx.doi.org/10.1007/s00432-010-0887-7.
  90. Yuanying Y., Lizhi N., Feng M., Xiaohua W., Jianying Z., Fei Y., Feng J., Lihua H., Jibing C., Jialiang L., Kecheng X. Therapeutic outcomes of combining cryotherapy, chemotherapy and DC-CIK immunotherapy in the treatment of metastatic non-small cell lung cancer. Cryobiology 2013; 67(2): 235–240, http://dx.doi.org/10.1016/j.cryobiol.2013.08.001.
  91. Ren J., Di L., Song G., Yu J., Jia J., Zhu Y., Yan Y., Jiang H., Liang X., Che L., Zhang J., Wan F., Wang X., Zhou X., Lyerly H.K. Selections of appropriate regimen of high-dose chemotherapy combined with adoptive cellular therapy with dendritic and cytokine-induced killer cells improved progression-free and overall survival in patients with metastatic breast cancer: reargument of such contentious therapeutic preferences. Clin Transl Oncol 2013; 15(10): 780–788, http://dx.doi.org/10.1007/s12094-013-1001-9.
  92. Lan X.-p., Chen Y.-g., Wang Z., Yuan C.-w., Wang G.-g., Lu G.-l., Mao S.-w., Jin X.-b., Xia Q.-h. Immunotherapy of DC-CIK cells enhances the efficacy of chemotherapy for solid cancer: a meta-analysis of randomized controlled trials in Chinese patients. J Zhejiang Univ Sci B 2015; 16(9): 743–756, http://dx.doi.org/10.1631/jzus.B1500003.
  93. Rosenberg S.A., Packard B.S., Aebersold P.M., Solomon D., Topalian S.L., Toy S.T., Simon P., Lotze M.T., Yang J.C., Seipp C.A., Simpson C., Carter C., Bock S., Schwartzentruber D., Wei J.P., White D.E. Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. A preliminary report. N Engl J Med 1988; 319(25): 1676–1680, http://dx.doi.org/10.1056/nejm198812223192527.
  94. Wu R., Forget M.A., Chacon J., Bernatchez C., Haymaker C., Chen J.Q., Hwu P., Radvanyi L.G. Adoptive T-cell therapy using autologous tumor-infiltrating lymphocytes for metastatic melanoma: current status and future outlook. Cancer J 2012; 18(2): 160–175, http://dx.doi.org/10.1097/PPO.0b013e31824d4465.
  95. Tran K.Q., Zhou J., Durflinger K.H., Langhan M.M., Shelton T.E., Wunderlich J.R., Robbins P.F., Rosenberg S.A., Dudley M.E. Minimally cultured tumor-infiltrating lymphocytes display optimal characteristics for adoptive cell therapy. J Immunother 2008; 31(8): 742–751, http://dx.doi.org/10.1097/cji.0b013e31818403d5.
  96. Ampie L., Choy W., Lamano J.B., Fakurnejad S., Bloch O., Parsa A.T. Heat shock protein vaccines against glioblastoma: from bench to bedside. J Neurooncol 2015; 123(3): 441–448, http://dx.doi.org/10.1007/s11060-015-1837-7.
  97. Belli F., Testori A., Rivoltini L., Maio M., Andreola G., Sertoli M.R., Gallino G., Piris A., Cattelan A., Lazzari I., Carrabba M., Scita G., Santantonio C., Pilla L., Tragni G., Lombardo C., Arienti F., Marchianò A., Queirolo P., Bertolini F., Cova A., Lamaj E., Ascani L., Camerini R., Corsi M., Cascinelli N., Lewis J.J., Srivastava P., Parmiani G. Vaccination of metastatic melanoma patients with autologous tumor-derived heat shock protein gp96-peptide complexes: clinical and immunologic findings. J Clin Oncol 2002; 20: 4169–4180, http://dx.doi.org/10.1200/JCO.2002.09.134.
  98. Grossarth-Maticek R., Kiene H., Baumgartner S.M., Ziegler R. Use of Iscador, an extract of European mistletoe (Viscum album), in cancer treatment: prospective nonrandomized and randomized matched-pair studies nested within a cohort study. Altern Ther Health Med 2001; 7(3): 57–66, 68–72, 74–76 passim.
  99. Scott A.M., Wolchok J.D., Old L.J. Antibody therapy of cancer. Nat Rev Cancer 2012, 12(4): 278–287, http://dx.doi.org/10.1038/nrc3236.
  100. Melero I., Hervas-Stubbs S., Glennie M., Pardoll D.M., Chen L. Immunostimulatory monoclonal antibodies for cancer therapy. Nat Rev Cancer 2007; 7(2): 95–106, http://dx.doi.org/10.1038/nrc2051.
  101. Scott A.M., Allison J.P., Wolchok J.D. Monoclonal antibodies in cancer therapy. Cancer Immun 2012; 12: 14.
  102. Topalian S.L., Hodi F.S., Brahmer J.R., Gettinger S.N., Smith D.C., McDermott D.F., Powderly J.D., Carvajal R.D., Sosman J.A., Atkins M.B., Leming P.D., Spigel D.R., Antonia S.J., Horn L., Drake C.G., Pardoll D.M., Chen L., Sharfman W.H., Anders R.A., Taube J.M., McMiller T.L., Xu H., Korman A.J., Jure-Kunkel M., Agrawal S., McDonald D., Kollia G.D., Gupta A., Wigginton J.M., Sznol M. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 2012; 366(26): 2443–2454, http://dx.doi.org/10.1056/NEJMoa1200690.
  103. Brahmer J.R., Tykodi S.S., Chow L.Q., Hwu W.J., Topalian S.L., Hwu P., Drake C.G., Camacho L.H., Kauh J., Odunsi K., Pitot H.C., Hamid O., Bhatia S., Martins R., Eaton K., Chen S., Salay T.M., Alaparthy S., Grosso J.F., Korman A.J., Parker S.M., Agrawal S., Goldberg S.M., Pardoll D.M., Gupta A., Wigginton J.M. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med 2012; 366(26): 2455–2465, http://dx.doi.org/10.1056/NEJMoa1200694.
  104. Eggermont A.M., Testori A., Maio M., Robert C. Anti–CTLA-4 antibody adjuvant therapy in melanoma. Semin Oncol 2010; 37(5): 455–459, http://dx.doi.org/10.1053/j.seminoncol.2010.09.009.
  105. Zielinski C., Knapp S., Mascaux C., Hirsch F. Rationale for targeting the immune system through checkpoint molecule blockade in the treatment of non-small-cell lung cancer. Ann Oncol 2013; 24(5): 1170–1179, http://dx.doi.org/10.1093/annonc/mds647.
  106. Clément-Duchêne C., Wakelee H. Antiangiogenic agents and vascular disrupting agents for the treatment of lung cancer: a review. J Thorac Oncol 2010; 5(1): 129–139, http://dx.doi.org/10.1097/JTO.0b013e3181c59a60.
  107. Lipson E.J., Sharfman W.H., Drake C.G., Wollner I., Taube J.M., Anders R.A., Xu H., Yao S., Pons A., Chen L., Pardoll D.M., Brahmer J.R, Topalian S.L. Durable cancer regression off-treatment and effective reinduction therapy with an anti-PD-1 antibody. Clin Cancer Res 2013; 19(2): 462–468, http://dx.doi.org/10.1158/1078-0432.CCR-12-2625.
  108. Williams K.J., Lockhart A.C. Targeting colorectal cancer with anti-epidermal growth factor receptor antibodies: focus on panitumumab. Onco Targets Ther 2009; 18(2): 161–170.
  109. Saif M.W. Anti-VEGF agents in metastatic colorectal cancer (mCRC): are they all alike? Cancer Manag Res 2013; 5: 103–115, http://dx.doi.org/10.2147/CMAR.S45193.
  110. Oosterwijk E., Boerman O.C., Oyen W.J.C., Old L.J., Mulders P.F. Antibody therapy in renal cell carcinoma. World J Urol 2008; 26(2): 141–146, http://dx.doi.org/10.1007/s00345-008-0236-5.
  111. Mocellin S., Nitti D. CTLA-4 blockade and the renaissance of cancer immunotherapy. Biochim Biophys Acta 2013; 1836(2): 187–196, http://dx.doi.org/10.1016/j.bbcan.2013.05.003.
  112. Langer C.J. Targeted therapy in head and neck cancer: state of the art 2007 and review of clinical applications. Cancer 2008; 112(12): 2635–2645, http://dx.doi.org/10.1002/cncr.23521.
  113. Small E.J., Tchekmedyian N.S., Rini B.I., Fong L., Lowy I., Allison J.P. A pilot trial of CTLA-4 blockade with human anti-CTLA-4 in patients with hormone-refractory prostate cancer. Clin Cancer Res 2007; 13(6): 1810–1815, http://dx.doi.org/10.1158/1078-0432.CCR-06-2318.
  114. Vrbic S., Pejcic I., Filipovic S., Kocic B., Vrbic M. Current and future anti-HER2 therapy in breast cancer. J BUON 2013; 18(1): 4–16.
  115. Rech A.J., Mick R., Martin S., Recio A., Aqui N.A., Powell D.J. Jr, Colligon T.A., Trosko J.A., Leinbach L.I., Pletcher C.H., Tweed C.K., DeMichele A., Fox K.R., Domchek S.M., Riley J.L., Vonderheide R.H. CD25 blockade depletes and selectively reprograms regulatory T cells in concert with immunotherapy in cancer patients. Sci Transl Med 2012; 4(134): 134ra62, http://dx.doi.org/10.1126/scitranslmed.3003330.
  116. Garrett C.R., Eng C. Cetuximab in the treatment of patients with colorectal cancer. Expert Opin Biol Ther 2011; 11(7): 937–949, http://dx.doi.org/10.1517/14712598.2011.582464.
  117. Specenier P., Vermorken J.B. Cetuximab: its unique place in head and neck cancer treatment. Biologics 2013; 7: 77–90, http://dx.doi.org/10.2147/BTT.S43628.
  118. Islam R., Chyou P.H., Burmester J.K. Modeling efficacy of bevacizumab treatment for metastatic colon cancer. J Cancer 2013; 4(4): 330–355, http://dx.doi.org/10.7150/jca.6083.
  119. Keating G.M. Bevacizumab: a review of its use in advanced cancer. Drugs 2014; 74(16): 1891–1925, http://dx.doi.org/10.1007/s40265-014-0302-9.
  120. Verma S., Miles D., Gianni L., Krop I.E., Welslau M., Baselga J., Pegram M., Oh D.Y., Dieras V., Guardino E., Fang L., Lu M.W., Olsen S., Blackwell K.; EMILIA Study Group. Trastuzumab emtansine for HER2-positive advanced breast cancer. N Engl J Med 2012; 367(19): 1783–1791, http://dx.doi.org/10.1056/NEJMoa1209124.
  121. Fellner C. Ipilimumab (Yervoy) prolongs survival in advanced melanoma. P T 2012; 37(9): 503–511.
  122. Dotan E., Aggarwal C., Smith M.R. Impact of Rituximab (Rituxan) on the treatment of B-cell non-Hodgkin’s lymphoma. P T 2010; 35(3): 148–157.
Yuzhakova D.V., Shirmanova M.V., Sergeeva T.F., Zagaynova E.V., Lukyanov К.А. Immunotherapy of Cancer (Review). Sovremennye tehnologii v medicine 2016; 8(1): 173, https://doi.org/10.17691/stm2016.8.1.23


Журнал базах данных

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg

SCImago Journal & Country Rank