Сегодня: 22.01.2025
RU / EN
Последнее обновление: 27.12.2024

Роботизированные и механотерапевтические технологии для восстановления функции верхних конечностей: перспективы развития (обзор)

Л.А. Черникова, Н.А. Супонева, А.С. Клочков, А.Е. Хижникова, Р.Х. Люкманов, Е.В. Гнедовская, Д.С. Янкевич, М.А. Пирадов

Ключевые слова: роботизированные технологии; реабилитация при инсульте; экзоскелет; мозг–компьютер интерфейс; механотерапия.​

Проведен анализ достоинств и недостатков роботизированных и механотерапевтических технологий, применяющихся в ре­абилитации верхних конечностей. Роботизированные и механотерапевтические устройства, начав свое распространение как простейшие контроллеры и системы антигравитационной разгрузки руки при кинезотерапии, в дальнейшем показали свой потенциал в качестве комплексов, обеспечивающих полноценное двигательное обучение целенаправленным движениям благодаря максимальному соответствию анатомическим и биомеханическим особенностям руки. Интеграция функциональной нервно-мышечной электростимуляции с роботизированными и механотерапевтическими технологиями значительно расширяет возможности реабилитационных и ассистирующих роботов, а появление носимых и стационарных экзоскелетов приведет к созданию принципиально новых устройств, находящихся на стыке реабилитационных и ассистирующих технологий. В настоящее время уже идет работа над прототипом роботизированных ассистивных и реабилитационных устройств, управляемых с помощью интерфейса мозг–компьютер.



Литература

  1. Пирадов М.А. Интенсивная терапия инсульта: взгляд на проблему. Анналы клинической и экспериментальной неврологии 2007; 1(1): 17–22.
  2. Пирадов М.А., Суслина З.А., Танашян М.М. Прин­ципы лечения острых ишемических нарушений мозгового кровообращения. В кн.: Очерки ангионеврологии. М; 2005; с. 206–215.
  3. Truelsen T., Piechowski-Jozwiak B., Bonita R., Mathers C., Bogousslavsky J., Boysen G. Stroke incidence and prevalence in Europe: a review of available data. Eur J Neurol 2006; 13(6): 581–598, https://doi.org/10.1111/j.1468-1331.2006.01138.x.
  4. Winstein C.J., Stein J., Arena R., Bates B., Cherney L.R., Cramer S.C., Deruyter F., Eng J.J., Fisher B., Harvey R.L., Lang C.E., MacKay-Lyons M., Ottenbacher K.J., Pugh S., Reeves M.J., Richards L.G., Stiers W., Zorowitz R.D.; American Heart Association Stroke Council, Council on Cardiovascular and Stroke Nursing, Council on Clinical Cardiology, and Council on Quality of Care and Outcomes Research. Guidelines for adult stroke rehabilitation and recovery: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 2016; 47(6): e198–e169, https://doi.org/10.1161/STR.0000000000000098.
  5. Beebe J.A., Lang C.E. Active range of motion predicts upper extremity function 3 months after stroke. Stroke 2009; 40(5): 1772–1779, https://doi.org/10.1161/strokeaha.108.536763.
  6. Simpson L.A., Eng J.J. Functional recovery following stroke: capturing changes in upper-extremity function. Neurorehabil Neural Repair 2012; 27(3): 240–250, https://doi.org/10.1177/1545968312461719.
  7. Lum P.S., Godfrey S.B., Brokaw E.B., Holley R.J., Nichols D. Robotic approaches for rehabilitation of hand function after stroke. Am J Phys Med Rehabil 2012; 91: S242–S254, https://doi.org/10.1097/phm.0b013e31826bcedb.
  8. Parker V.M., Wade D.T., Hewer R.L. Loss of arm function after stroke: measurement, frequency, and recovery. Int Rehabil Med 1986; 8(2): 69–73, https://doi.org/10.3109/03790798609166178.
  9. Wade D.T., Langton-Hewer R., Wood V.A., Skilbeck C.E., Ismail H.M. The hemiplegic arm after stroke: measurement and recovery. J Neurol Neurosurg Psychiatry 1983; 46(6): 521–524, https://doi.org/10.1136/jnnp.46.6.521.
  10. Bates B.E., Kwong P.L., Xie D., Valimahomed A., Ripley D.C., Kurichi J.E., Stineman M.G. Factors influencing receipt of early rehabilitation after stroke. Arch Phys Med Rehabil 2013; 94(12): 2349–2356, https://doi.org/10.1016/j.apmr.2013.07.021.
  11. Bates B.E., Xie D., Kwong P.L., Kurichi J.E., Ripley D.C., Davenport C., Vogel W.B., Stineman M.G. Development and validation of prognostic indices for recovery of physical functioning following stroke: part 2. PM&R 2015; 7(7): 699–710, https://doi.org/10.10 16/j.pmrj.2015.01.012.
  12. Bates B.E., Xie D., Kwong P.L., Kurichi J.E., Cowper Ripley D., Davenport C., Vogel W.B., Stineman M.G. Development and validation of prognostic indices for recovery of physical functioning following stroke: part 1. PM&R 2015; 7(7): 685–698, https://doi.org/10.1016/j.pmrj.2015.01.011.
  13. Arboix A. Stroke prognosis in diabetes mellitus: new insights but questions remain. Expert Rev Cardiovasc Ther 2009; 7(10): 1181–1185, https://doi.org/10.1586/erc.09.98.
  14. Staub F., Bogousslavsky J. Post-stroke depression or fatigue? Eur Neurol 2001; 45(1): 3–5, https://doi.org/10.1159/000052081.
  15. Chen Y.K., Qu J.F., Xiao W.M., Li W.Y., Weng H.Y., Li W., Liu Y.L., Luo G.P., Fang X.W., Ungvari G.S., Xiang Y.T. Poststroke fatigue: risk factors and its effect on functional status and health-related quality of life. Int J Stroke 2015; 10(4): 506–512, https://doi.org/10.1111/ijs.12409.
  16. Naess H., Lunde L., Brogger J., Waje-Andreassen U. Fatigue among stroke patients on long-term follow-up. The Bergen Stroke Study. J Neurol Sci 2012; 312(1–2): 138–141, https://doi.org/10.1016/j.jns.2011.08.002.
  17. Maaijwee N.A., Arntz R.M., Rutten-Jacobs L.C., Schaapsmeerders P., Schoonderwaldt H.C., van Dijk E.J., de Leeuw F.E. Post-stroke fatigue and its association with poor functional outcome after stroke in young adults. J Neurol Neurosurg Psychiatry 2015; 86(10): 1120–1126, https://doi.org/10.1136/jnnp-2014-308784.
  18. Суслина З.А., Иллариошкин С.Н., Пирадов М.А. Неврология и нейронауки — прогноз развития. Анналы клинической и экспериментальной неврологии 2007; 1(1): 5–9.
  19. The AVERT Trial Collaboration group. Efficacy and safety of very early mobilisation within 24 h of stroke onset (AVERT): a randomised controlled trial. Lancet 2015; 386(9988): 46–55, https://doi.org/10.1016/s0140-6736(15)60690-0.
  20. Remple M.S., Bruneau R.M., VandenBerg P.M., Goertzen C., Kleim J.A. Sensitivity of cortical movement representations to motor experience: evidence that skill learning but not strength training induces cortical reorganization. Behav Brain Res 2001; 123(2): 133–141, https://doi.org/10.1016/s0166-4328(01)00199-1.
  21. Luke L.M., Allred R.P., Jones T.A. Unilateral ischemic sensorimotor cortical damage induces contralesional synaptogenesis and enhances skilled reaching with the ipsilateral forelimb in adult male rats. Synapse 2004; 54(4): 187–199, https://doi.org/10.1002/syn.20080.
  22. Reinkensmeyer D.J., Burdet E., Casadio M., Krakauer J.W., Kwakkel G., Lang C.E., Swinnen S.P., Ward N.S., Schweighofer N. Computational neurorehabilitation: modeling plasticity and learning to predict recovery. J Neuroeng Rehabil 2016; 13(1): 42, https://doi.org/10.1186/s12984-016-0148-3.
  23. Lang C.E., Lohse K.R., Birkenmeier R.L. Dose and timing in neurorehabilitation. Curr Opin Neurol 2015; 28(6): 549–555, https://doi.org/10.1097/wco.0000000000000256.
  24. Lang C.E., Wagner J.M., Edwards D.F., Dromerick A.W. Upper extremity use in people with hemiparesis in the first few weeks after stroke. J Neurol Phys Ther 2007; 31(2): 56–63, https://doi.org/10.1097/npt.0b013e31806748bd.
  25. Kumar P., Kathuria P., Nair P., Prasad K. Prediction of upper limb motor recovery after subacute ischemic stroke using diffusion tensor imaging: a systematic review and meta-analysis. J Stroke 2016; 18(1): 50–59, https://doi.org/10.5853/jos.2015.01186.
  26. Carr J.H., Shepherd R.B. Physiotherapy in disorders of the brain. Oxford: Butterworth Heinemann; 1980.
  27. Carr J., Shepherd R. A motor relearningprogramme for stroke. London: William Heinemann Medical Books; 1982.
  28. Horak F.B. Assumptions underlying motor control for neurologic rehabilitation. In: Foundation for physical therapy. Contemporary management of motor control problems. Proceedings of the II STEP conference. Alexandria, VA: Foundation for Physical Therapy; 1991; p. 11–27.
  29. Woollacott M.H., Shumway-Cook A. Changes in posture control across the life span — a systems approach. Phys Ther 1990; 70(12): 799–807.
  30. Черникова Л.А. Восстановительная неврология. Ин­но­вационные технологии в нейрореабилитации. М: Ме­­ди­цинское информационное агентство; 2016; 344 с.
  31. Усольцева Е.В., Машкара К.И. Хирургия забо­леваний и повреждений кисти. М: Медицина; 1978; 336 с.
  32. Kapandji A.I. The physiology of the joints: Vol. 1. Upper limb. Philadelphia, PA: Churchill Livingstone; 2007.
  33. Santello M., Baud-Bovy G., Jörntell H. Neural bases of hand synergies. Front Comput Neurosci 2013; 7, https://doi.org/10.3389/fncom.2013.00023.
  34. Черникова Л.А., Пирадов М.А., Супонева Н.А., Червяков А.В., Клочков А.С., Мокиенко О.А., Люкманов Р.Х., Пойдашева А.Г., Авдюнина И.А. Высокотехнологичные методы нейрореабилитации при заболеваниях нервной системы. В кн.: Неврология XXI века: диагностические, лечебные и исследовательские технологии. Под ред. Пи­ра­дова М.А., Иллариошкина С.Н., Танашян М.М. М; 2015; 274–331.
  35. Veerbeek J.M., van Wegen E., van Peppen R., van der Wees P.J., Hendriks E., Rietberg M., Kwakkel G. What is the evidence for physical therapy poststroke? A systematic review and meta-analysis. PLoS One 2014; 9(2): e87987, https://doi.org/10.1371/journal.pone.0087987.
  36. Waldner A., Tomelleri C., Hesse S. Transfer of scientific concepts to clinical practice: recent robot-assisted training studies. Funct Neurol 2009; 24(4): 173–177.
  37. Hesse S., Schmidt H., Werner C., Bardeleben A. Upper and lower extremity robotic devices for rehabilitation and for studying motor control. Curr Opin Neurol 2003; 16(6): 705–710, https://doi.org/10.1097/00019052-200312000-00010.
  38. Balasubramanian S., Klein J., Burdet E. Robot-assisted rehabilitation of hand function. Curr Opin Neurol 2010; 23(6): 661–670, https://doi.org/10.1097/wco.0b013e32833e99a4.
  39. Mehrholz J., Hädrich A., Platz T., Kugler J., Pohl M. Electromechanical and robot-assisted arm training for improving generic activities of daily living, arm function, and arm muscle strength after stroke. Cochrane Database Syst Rev 2012; 6: CD006876, https://doi.org/10.1002/14651858.cd006876.pub3.
  40. Mehrholz J., Platz T., Kugler J., Pohl M. Electromechanical and robot-assisted arm training for improving arm function and activities of daily living after stroke. Cochrane Database Syst Rev 2008; 4: CD006876, https://doi.org/10.1002/14651858.cd006876.pub2.
  41. Mehrholz J., Pohl M., Platz T., Kugler J., Elsner B. Electromechanical and robot-assisted arm training for improving activities of daily living, arm function, and arm muscle strength after stroke. Cochrane Database Syst Rev 2015; 11: CD006876, https://doi.org/10.1002/14651858.cd006876.pub4.
  42. Aisen M.L. Krebs H.I., Hogan N., McDowell F., Volpe B.T. The effect of robot-assisted therapy and rehabilitative training on motor recovery following stroke. Arch Neurol 1997; 54(4): 443–446, https://dx.doi.org/10.1001/archneur.1997.00550160075019.
  43. Volpe B.T., Krebs H.I., Hogan N., Edelsteinn L., Diels C.M., Aisen M.L. Robot training enhanced motor outcome in patients with stroke maintained over 3 years. Neurology 1999; 53(8): 1874–1874, https://doi.org/10.1212/wnl.53.8.1874.
  44. Fasoli S.E., Krebs H.I., Stein J., Frontera W.R., Hogan N. Effects of robotic therapy on motor impairment and recovery in chronic stroke. Arch Phys Med Rehabil 2003; 84(4): 477–482, https://dx.doi.org/10.1053/apmr.2003.50110.
  45. Fasoli S.E., Krebs H.I., Ferraro M., Hogan N., Volpe B.T. Does shorter rehabilitation limit potential recovery poststroke? Neurorehabil Neural Repair 2004; 18(2): 88–94, https://doi.org/10.1177/0888439004267434.
  46. Krebs H.I., Volpe B.T., Williams D., Celestino J., Charles S.K., Lynch D., Hogan N. Robot-aided neurorehabilitation: a robot for wrist rehabilitation. IEEE Trans Neural Syst Rehabil Eng 2007; 15(3): 327–335, https://doi.org/10.1109/tnsre.2007.903899.
  47. Masia L., Krebs H.I., Cappa P., Hogan N. Design and characterization of hand module for whole-arm rehabilitation following stroke. IEEE ASME Trans Mechatron 2007; 12(4): 399–340, https://doi.org/10.1109/tmech.2007.901928.
  48. Lo A.C., Guarino P.D., Richards L.G., Haselkorn J.K., Wittenberg G.F., Federman D.G., Ringer R.J., Wagner T.H., Krebs H.I., Volpe B.T., Bever C.T. Jr., Bravata D.M., Duncan P.W., Corn B.H., Maffucci A.D., Nadeau S.E., Conroy S.S., Powell J.M., Huang G.D., Peduzzi P. Robot-assisted therapy for long-term upper-limb impairment after stroke. N Engl J Med 2010; 362(19): 1772–1783, https://doi.org/10.1056/nejmoa0911341.
  49. Lum P.S., Burgar C.G., Kenney D.E., Van der Loos H.F. Quantification of force abnormalities during passive and active-assisted upper-limb reaching movements in post-stroke hemiparesis. IEEE Trans Biomed Eng 1999; 46(6): 652–662, https://dx.doi.org/10.1109/10.764942.
  50. Lum P.S., Burgar C.G., Shor P.C. Evidence for improved muscle activation patterns after retraining of reaching movements with the MIME robotic system in subjects with post-stroke hemiparesis. IEEE Trans Neural Syst Rehabil Eng 2004; 12(2): 186–194, https://doi.org/10.1109/tnsre.2004.827225.
  51. Lum P.S., Burgar C.G., Van der Loos M., Shor P.C., Majmundar M., Yap R. MIME robotic device for upper-limb neurorehabilitation in subacute stroke subjects: a follow-up study. J Rehabil Res Dev 2006; 43(5): 631–632, https://doi.org/10.1682/jrrd.2005.02.0044.
  52. Burgar C.G., Lum P.S., Scremin A.M., Garber S.L., Van der Loos H.F., Kenney D., Shor P. Robot-assisted upper-limb therapy in acute rehabilitation setting following stroke: Department of Veterans Affairs multisite clinical trial. J Rehabil Res Dev 2011; 48(4): 445–458, https://doi.org/10.1682/jrrd.2010.04.0062.
  53. Hesse S., Schulte-Tigges G., Konrad M., Bardeleben A., Werner C. Robot-assisted arm trainer for the passive and active practice of bilateral forearm and wrist movements in hemiparetic subjects. Arch Phys Med Rehabil 2003; 84(6): 915–920, https://doi.org/10.1016/s0003-9993(02)04954-7.
  54. Hesse S., Werner C., Pohl M., Rueckriem S., Mehrholz J., Lingnau M.L. Computerized arm training improves the motor control of the severely affected arm after stroke: a single-blinded randomized trial in two centers. Stroke 2005; 36(9): 1960–1966, https://doi.org/10.1161/01.str.0000177865.37334.ce.
  55. Liao W.W., Wu C.Y., Hsieh Y.W., Lin K.C., Chang W.Y. Effects of robot-assisted upper limb rehabilitation on daily function and real-world arm activity in patients with chronic stroke: a randomized controlled trial. Clin Rehabil 2012; 26(2): 111–120, https://doi.org/10.1177/0269215511416383.
  56. Yang C.L., Lin K.C., Chen H.C., Wu C.Y., Chen C.L. Pilot comparative study of unilateral and bilateral robot-assisted training on upper-extremity performance in patients with stroke. Am J Occup Ther 2012; 66(2): 198–206, https://doi.org/10.5014/ajot.2012.003103.
  57. Picelli A., Tamburin S., Passuello M., Waldner A., Smania N. Robot-assisted arm training in patients with Parkinson’s disease: a pilot study. J Neuroeng Rehabil 2014; 11: 28, https://doi.org/10.1186/1743-0003-11-28.
  58. Masiero S., Celia A., Armani M., Rosati G., Tavolato B., Ferraro C., Ortolani M. Robot-aided intensive training in post-stroke recovery. Aging Clin Exp Res 2006; 18(3): 261–265, https://doi.org/10.1007/bf03324658.
  59. Masiero S., Celia A., Armani M., Rosati G. A novel robot device in rehabilitation of post-stroke hemiplegic upper limbs. Aging Clin Exp Res 2006; 18(6): 531–535, https://doi.org/10.1007/bf03324854.
  60. Masiero S., Celia A., Rosati G., Armani M. Robotic-assisted rehabilitation of the upper limb after acute stroke. Arch Phys Med Rehabil 2007; 88(2): 142–149, https://doi.org/10.1016/j.apmr.2006.10.032.
  61. Masiero S., Armani M., Rosati G. Upper-limb robot-assisted therapy in rehabilitation of acute stroke patients: focused review and results of new randomized controlled trial. J Rehabil Res Dev 2011; 48(4): 355–366, https://doi.org/10.1682/jrrd.2010.04.0063.
  62. Masiero S., Armani M., Ferlini G., Rosati G., Rossi A. Randomized trial of a robotic assistive device for the upper extremity during early inpatient stroke rehabilitation. Neurorehabil Neural Repair 2014; 28(4): 377–386, https://doi.org/10.1177/1545968313513073.
  63. Bastiaens H., Alders G., Feys P., Notelaers S., Coninx K., Kerkhofs L., Truyens V., Geers R., Goedhart A. Facilitating robot-assisted training in MS patients with arm paresis: a procedure to individually determine gravity compensation. IEEE Int Conf Rehabil Robot 2011; 2011: 5975507, https://doi.org/10.1109/icorr.2011.5975507.
  64. Huang V.S., Krakauer J.W. Robotic neurorehabilitation: a computational motor learning perspective. J Neuroeng Rehabil 2009; 6: 5, https://doi.org/10.1186/1743-0003-6-5.
  65. Kwakkel G., Kollen B.J., Krebs H.I. Effects of robot-assisted therapy on upper limb recovery after stroke: a systematic review. Neurorehabil Neural Repair 2008; 22(2): 111–121, https://doi.org/10.1177/1545968307305457.
  66. Norouzi-Gheidari N., Archambault P.S., Fung J. Effects of robot-assisted therapy on stroke rehabilitation in upper limbs: systematic review and meta-analysis of the literature. J Rehabil Res Dev 2012; 49(4): 479–496, https://doi.org/10.1682/jrrd.2010.10.0210.
  67. Hu X.L., Tong K.Y., Song R., Zheng X.J., Lui K.H., Leung W.W., Ng S., Au-Yeung S.S. Quantitative evaluation of motor functional recovery process in chronic stroke patients during robot-assisted wrist training. J Electromyogr Kinesiol 2009; 19(4): 639–650, https://doi.org/10.1016/j.jelekin.2008.04.002.
  68. Prange G.B., Jannink M.J.A., Groothuis-Oudshoorn C.G.M., Hermens H.J., IJzerman M.J. Systematic review of the effect of robot-aided therapy on recovery of the hemiparetic arm after stroke. J Rehabil Res Dev 2006; 43(2): 171–184, https://doi.org/10.1682/jrrd.2005.04.0076.
  69. Stein J., Krebs H.I., Frontera W.R., Fasoli S.E., Hughes R., Hogan N. Comparison of two techniques of robot-aided upper limb exercise training after stroke. Am J Phys Med Rehabil 2004; 83(9): 720–728, https://doi.org/10.1097/01.phm.0000137313.14480.ce.
  70. Riener R., Nef T., Colombo G. Robot-aided neurorehabilitation of the upper extremities. Med Biol Eng Comput 2005; 43(1): 2–10, https://doi.org/10.1007/bf02345116.
  71. Nef T., Guidali M., Riener R. ARMin III — arm therapy exoskeleton with an ergonomic shoulder actuation. Appl Bionics Biomech 2009; 6(2): 127–142, https://doi.org/10.1080/11762320902840179.
  72. Howlett O.A., Lannin N.A., Ada L., McKinstry C. Functional electrical stimulation improves activity after stroke: a systematic review with meta-analysis. Arch Phys Med Rehabil 2015; 96(5): 934–943, https://doi.org/10.1016/j.apmr.2015.01.013.
  73. Alon G., Conroy V.M., Donner T.W. Intensive training of subjects with chronic hemiparesis on a motorized cycle combined with functional electrical stimulation (FES): a feasibility and safety study. Physiother Res Int 2010; 16(2): 81–91, https://doi.org/10.1002/pri.475.
  74. Hu X.L., Tong K.Y., Li R., Xue J.J., Ho S.K., Chen P. The effects of electromechanical wrist robot assistive system with neuromuscular electrical stimulation for stroke rehabilitation. J Electromyogr Kinesiol 2012; 22(3): 431–439, https://doi.org/10.1016/j.jelekin.2011.12.010.
  75. Li Z., Wang B., Sun F., Yang C., Xie Q., Zhang W. sEMG-based joint force control for an upper-limb power-assist exoskeleton robot. IEEE J Biomed Health Inform 2014; 18(3): 1043–1050, https://doi.org/10.1109/jbhi.2013.2286455.
  76. Cesqui B., Mezzetti M., Lacquaniti F., d’Avella A. Gaze behavior in one-handed catching and its relation with interceptive performance: what the eyes can’t tell. PLoS One 2015; 10(3): e0119445, https://doi.org/10.1371/journal.pone.0119445.
  77. Rong W., Tong K.Y., Hu X.L., Ho S.K. Effects of electromyography-driven robot-aided hand training with neuromuscular electrical stimulation on hand control performance after chronic stroke. Disabil Rehabil Assist Technol 2013; 10(2): 149–159, https://doi.org/10.3109/17483107.2013.873491.
  78. Song R., Tong K., Hu X., Zhou W. Myoelectrically controlled wrist robot for stroke rehabilitation. J Neuroeng Rehabil 2013; 10(1): 52, https://doi.org/10.1186/1743-0003-10-52.
  79. Belardinelli A., Stepper M.Y., Butz M.V. It’s in the eyes: planning precise manual actions before execution. J Vis 2016; 16(1): 18, https://doi.org/10.1167/16.1.18.
  80. Schnorenberg A.J., Campbell-Kyureghyan N.H., Beschorner K.E. Biomechanical response to ladder slipping events: effects of hand placement. J Biomech 2015; 48(14): 3810–3815, https://doi.org/10.1016/j.jbiomech.2015.09.001.
  81. Bozzacchi C., Domini F. Lack of depth constancy for grasping movements in both virtual and real environments. J Neurophysiol 2015; 114(4): 2242–2248, https://doi.org/10.1152/jn.00350.2015.
  82. Chernikova L.A. Novel technologies in rehabilitation of stroke patients. Atmosfera. Nervnye bolezni 2005; 2: 32–35.
  83. Schabowsky C.N., Godfrey S.B., Holley R.J., Lum P.S. Development and pilot testing of HEXORR: hand EXOskeleton rehabilitation robot. J Neuroeng Rehabil 2010; 7(1): 36, https://doi.org/10.1186/1743-0003-7-36.
  84. Brokaw E.B., Black I., Holley R.J., Lum P.S. Hand Spring Operated Movement Enhancer (HandSOME): a portable, passive hand exoskeleton for stroke rehabilitation. IEEE Trans Neural Syst Rehabil Eng 2011; 19(4): 391–399, https://doi.org/10.1109/tnsre.2011.2157705.
  85. Feigin V.L., Forouzanfar M.H., Krishnamurthi R., Mensah G.A., Connor M., Bennett D.A., Moran A.E., Sacco R.L., Anderson L., Truelsen T., O’Donnell M., Venketasubramanian N., Barker-Collo S., Lawes C.M., Wang W., Shinohara Y., Witt E., Ezzati M., Naghavi M., Murray C. Global and regional burden of stroke during 1990–2010: findings from the Global Burden of Disease Study 2010. Lancet 2014; 383(9913): 245–255, https://doi.org/10.1016/s0140-6736(13)61953-4.
  86. Ates S., Lobo-Prat J., Lammertse P., van der Kooij H., Stienen A.H.A. SCRIPT passive orthosis: design and technical evaluation of the wrist and hand orthosis for rehabilitation training at home. IEEE Int Conf Rehabil Robot 2013; 2013: 6650401, https://doi.org/10.1109/icorr.2013.6650401.
  87. Vanoglio F., Luisa A., Garofali F., Mora C. Evaluation of the effectiveness of Gloreha (Hand Rehabilitation Glove) on hemiplegic patients. Pilot study. In: XIII Congress of Italian Society of Neurorehabilitation, 18–20 April 2013, Bari (Italy).
  88. Ho N.S., Tong K.Y., Hu X.L., Fung K.L., Wei X.J., Rong W., Susanto E.A. An EMG-driven exoskeleton hand robotic training device on chronic stroke subjects: task training system for stroke rehabilitation. IEEE Int Conf Rehabil Robot 2011; 2011: 5975340, https://doi.org/10.1109/icorr.2011.5975340.
  89. Lambercy O., Schröder D., Zwicker S., Gassert R. Design of a thumb exoskeleton for hand rehabilitation. In: Proceedings of the 7th International Convention on Rehabilitation Engineering and Assistive Technology. Singapore; 2013; p. 41.
  90. Stein J., Bishop L., Gillen G., Helbok R. A pilot study of robotic-assisted exercise for hand weakness after stroke. IEEE Int Conf Rehabil Robot 2011; 2011: 5975426, https://doi.org/10.1109/icorr.2011.5975426.
  91. Lambercy O., Robles A.J., Kim Y., Gassert R. Design of a robotic device for assessment and rehabilitation of hand sensory function. IEEE Int Conf Rehabil Robot 2011; 2011: 5975436, https://doi.org/10.1109/icorr.2011.5975436.
  92. Topping M. An overview of the development of Handy 1, a rehabilitation robot to assist the severely disabled. Artificial Life and Robotics 2000; 4(4): 188–192, https://doi.org/10.1007/bf02481173.
  93. Mokienko O.A., Chervyakov A.V., Kulikova S.N., Bobrov P.D., Chernikova L.A., Frolov A.A., Piradov M.A. Increased motor cortex excitability during motor imagery in brain–computer interface trained subjects. Front Comput Neurosci. 2013; 7: 168, https://doi.org/10.3389/fncom.2013.00168.
  94. Soekadar S.R., Silvoni S., Cohen L.G., Birbaumer N. Brain–machine interfaces in stroke neurorehabilitation. Clinical Systems Neuroscience 2014; 3–14, https://doi.org/10.1007/978-4-431-55037-2_1.
  95. Ang K.K., Chua K.S., Phua K.S., Wang C., Chin Z.Y., Kuah C.W., Low W., Guan C. A randomized controlled trial of EEG-based motor imagery brain–computer interface robotic rehabilitation for stroke. Clin EEG Neurosci 2014; 46(4): 310–320, https://doi.org/10.1177/1550059414522229.
  96. Mokienko O.A., Lyukmanov R.Kh., Chernikova L.A., Suponeva N.A., Piradov M.A., Frolov A.A. Brain–computer interface: the first clinical experience in Russia. Fiziologiya cheloveka 2016; 42(1): 31–39, https://doi.org/10.7868/s0131164616010136.
  97. Frolov A.A., Mokienko O., Lyukmanov R.Kh., Chernikova L.A., Kotov S.V., Turbina L.G., Bobrov P.D., Biryukova E.V., Kondur A.A., Ivanova G.E., Staritsyn A.N., Bushkova Yu.V., Dzhalagoniya I.Z., Kurganskaya M.E., Pavlova O.G., Budilin S.Yu., Aziatskaya G.A., Khizhnikova A.E., Chervyakov A.V., Lukyanov A.L., Nadareyshvily G.G. Preliminary results of a controlled study of BCI-exoskeleton technology efficacy in patients with poststroke arm paresis. Vestnik Rossiyskogo gosudarstvennogo meditsinskogo universiteta 2016; 2: 17–25.


Журнал базах данных

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg

SCImago Journal & Country Rank