Направленный остеогенез при имплантации в полостной дефект кости сетчатых конструкций из никелида титана
Цель исследования — изучение морфологических особенностей репаративного остеогенеза при имплантации в полостной дефект метафиза бедренной кости крыс сетчатых конструкций из никелида титана.
Материалы и методы. В эксперименте на крысах изучали репаративное костеобразование при имплантации в полостной дефект метафиза бедренной кости сетчатых конструкций из никелида титана. Использовали методы рентгенографии, световой и сканирующей электронной микроскопии, рентгеновского электронно-зондового микроанализа.
Результаты. Установлено, что микропористая поверхность имплантата обеспечивает адгезию остеобластов, остеоинтеграцию и адсорбцию эндогенных костных морфогенетических белков. Имплантат обладает остеокондуктивными и остеоиндуктивными свойствами, купирует воспалительный процесс. В периостальной зоне дефекта вокруг структур имплантата формируется мембранный защитный барьер, препятствующий прорастанию соединительной ткани и обеспечивающий направленный в зону повреждения репаративный остеогенез. Возмещение дефекта осуществляется формирующейся губчатой костью, объемная плотность которой более чем в полтора раза превышает контрольные показатели.
- Liu J., Kerns D.G. Mechanisms of guided bone regeneration: a review. Open Dent J 2014; 8(1): 56–65, https://doi.org/10.2174/1874210601408010056.
- Kim J.-Y., Yang B.-E., Ahn J.-H., Park S.O., Shim H.-W. Comparable efficacy of silk fibroin with the collagen membranes for guided bone regeneration in rat calvarial defects. J Adv Prosthodont 2014; 6(6): 539, https://doi.org/10.4047/jap.2014.6.6.539.
- Jung R.E., Fenner N., Hämmerle C.H.F., Zitzmann N.U. Long-term outcome of implants placed with guided bone regeneration (GBR) using resorbable and non-resorbable membranes after 12–14 years. Clin Oral Implants Res 2012; 24(10): 1065–107, https://doi.org/10.1111/j.1600-0501.2012.02522.x.
- Hammerle C.H.F., Jung R.E. Bone augmentation by means of barrier membranes. Periodontol 2000 2003; 33(1): 36–53, https://doi.org/10.1046/j.0906-6713.2003.03304.x.
- Karring T., Nyman S., Gottlow J., Laurell L. Development of the biological concept of guided tissue regeneration — animal and human studies. Periodontol 2000 1993; 1(1): 26–35, https://doi.org/10.1111/j.1600-0757.1993.tb00204.x.
- Schmidmaier G., Baehr K., Mohr S., Kretschmar M., Beck S., Wildemann B. Biodegradable polylactide membranes for bone defect coverage: biocompatibility testing, radiological and histological evaluation in a sheep model. Clin Oral Implants Res 2006; 17(4): 439–444, https://doi.org/10.1111/j.1600-0501.2005.01242.x.
- van Leeuwen A.C., Huddleston Slater J.J.R., Gielkens P.F.M., de Jong J.R., Grijpma D.W., Bos R.R.M. Guided bone regeneration in rat mandibular defects using resorbable poly(trimethylene carbonate) barrier membranes. Acta Biomater 2012; 8(4): 1422–1429, https://doi.org/10.1016/j.actbio.2011.12.004.
- Ирьянов Ю.М., Ирьянова Т.Ю. Замещение дефекта кости в условиях чрескостного остеосинтеза и применения имплантата из никелида титана. Морфология 2012; 142(4): 83–86.
- Iriyanov Y.M., Chernov V.F., Radchenko S.A., Chernov A.V. Plastic efficiency of different implants used for repair of soft and bone tissue defects. Bull Exp Biol Med 2013; 155(4): 518–521, https://doi.org/10.1007/s10517-013-2191-4.
- Irianov I.M., Diuriagina O.V., Karaseva T.I., Karasev E.A. The osteoplastic effectiveness of the implants made of mesh titanium nickelide constructs. Bosn J Basic Med Sci 2014; 14(1): 4–7.
- Ирьянов Ю.М., Ирьянова Т.Ю. Имплантат для замещения дефекта кости. Патент РФ 111759, МПК: А61F2/28. 2011.
- Uebersax L., Hagenmüller H., Hofmann S., Gruenblatt E., Müller R., Vunjaknovakovic G., Kaplan D.L., Merkle H.P., Meinel L. Effect of scaffold design on bone morphology in vitro. Tissue Eng 2006; 12(12): 3417–3429, https://doi.org/10.1089/ten.2006.12.3417.