Неинвазивный скрининг злокачественных новообразований полости рта in vivo с применением метода лазерно-индуцированной флюоресценции
В ходе исследования у 380 добровольцев зарегистрировано in vivo около 4000 спектров флюоресценции с участков ротовой полости в нормальном (n=133), потенциально злокачественном (n=155) и злокачественном (n=92) состоянии при возбуждении непрерывным волоконным He-Cd лазерой с длиной волны 325 нм. Анализ показал, что суммарные спектры из 7–8 полос возникают в различных видах молекул. В здоровом состоянии (у лиц без патологий полости рта, в том числе связанных с потреблением табачных изделий) слизистые оболочки щек, нижней губы и нижней поверхности языка имеют очень похожие спектры, в то время как спинка языка, его боковая поверхность и небо дают отличные от них и друг от друга спектры. При потенциально злокачественных и злокачественных заболеваниях спектры заметно отличаются на различных участках при различных состояниях. В связи с этим при оптической диагностике целесообразно использовать отдельные эталонные наборы данных о нормальных, потенциально злокачественных или злокачественных состояниях для различных участков.
Литература
- Alfano R., Tata D., Cordero J., Tomashefsky P., Longo F., Alfano M. Laser induced fluorescence spectroscopy from native cancerous and normal tissue. IEEE J Quantum Electron 1984; 20(12): 1507–1511, https://doi.org/10.1109/jqe.1984.1072322.
- Wagnieres G.A., Star W.M., Wilson B.C. In vivo fluorescence spectroscopy and imaging for oncological applications. Photochem Photobiol 1998; 68(5): 603–632, https://doi.org/10.1111/j.1751-1097.1998.tb02521.x.
- Gillenwater A., Jacob R., Ganeshappa R., Kemp B., El-Naggar A.K., Palmer J.L., Clayman G., Mitchell M.F., Richards-Kortum R. Noninvasive diagnosis of oral neoplasia based on fluorescence spectroscopy and native tissue autofluorescence. Arch Otolaryngol Head Neck Surg 1998; 124(11): 1251–1258, https://doi.org/10.1001/archotol.124.11.1251.
- Chen C.T., Chiang H.K., Chow S.N., Wang C.Y., Lee Y.S., Tsai J.C., Chiang C.P. Autofluorescence in normal and malignant human oral tissues and in DMBA-induced hamster buccal pouch carcinogenesis. J Oral Pathol Med 1998; 27(10): 470–474, https://doi.org/10.1111/j.1600-0714.1998.tb01914.x.
- Inaguma M., Hashimoto K. Porphyrin-like fluorescence in oral cancer. Cancer 1999; 86(11): 2201–2211, https://doi.org/10.1002/(sici)1097-0142(19991201)86:112201::aid-cncr53.0.co;2-9.
- Jayanthi J.L., Subhash N., Stephen M., Philip E.K., Beena V.T. Comparative evaluation of the diagnostic performance of autofluorescence and diffuse reflectance in oral cancer detection: a clinical study. J Biophotonics 2011; 4(10): 696–706, https://doi.org/10.1002/jbio.201100037.
- Wang C.Y., Chen C.T., Chiang C.P., Young S.T., Chow S.N., Chiang H.K. A probability-based multivariate statistical algorithm for autofluorescence spectroscopic identification of oral carcinogenesis. Photochem Photobiol 1999; 69(4): 471–477, https://doi.org/10.1111/j.1751-1097.1999.tb03314.x.
- Heintzelman D.L., Utzinger U., Fuchs H., Zuluaga A., Gossage K., Gillenwater A.M., Jacob R., Kemp B., Richards-Kortum R.R. Optimal excitation wavelengths for in vivo detection of oral neoplasia using fluorescence spectroscopy. Photochem Photobiol 2000; 72(1): 103–113, https://doi.org/10.1562/0031-8655(2000)0720103:oewfiv2.0.co;2.
- Majumder S.K., Mohanty S.K., Ghosh N., Gupta P.K., Jain D.K., Khan F. A pilot study on the use of autofluorescence spectroscopy for diagnosis of the cancer of human oral cavity. Current Science 2000; 79(8): 1089–1094.
- Eker C., Rydell R., Svanberg K., Andersson-Engels S. Multivariate analysis of laryngeal fluorescence spectra recorded in vivo. Lasers Surg Med 2001; 28(3): 259–266, https://doi.org/10.1002/lsm.1048.
- Müller M.G., Valdez T.A., Georgakoudi I., Backman V., Fuentes C., Kabani S., Laver N., Wang Z., Boone C.W., Dasari R.R., Shapshay S.M., Feld M.S. Spectroscopic detection and evaluation of morphologic and biochemical changes in early human oral carcinoma. Cancer 2003; 97(7): 1681–1692, https://doi.org/10.1002/cncr.11255.
- Ebihara A., Krasieva T.B., Liaw L.H., Fago S., Messadi D., Osann K., Wilder-Smith P. Detection and diagnosis of oral cancer by light-induced fluorescence. Lasers Surg Med 2003; 32(1): 17–24, https://doi.org/10.1002/lsm.10137.
- Wang C.-Y., Tsai T., Chen H.-M., Chen C.-T., Chiang C.-P. PLS-ANN based classification model for oral submucous fibrosis and oral carcinogenesis. Lasers Surg Med 2003; 32(4): 318–326, https://doi.org/10.1002/lsm.10153.
- De Veld D.C.G., Skurichina M., Witjes M.J.H., Duin R.P.W., Sterenborg D.J.C.M., Star W.M., Roodenburg J.L. Autofluorescence characteristics of healthy oral mucosa at different anatomical sites. Lasers Surg Med 2003; 32(5): 367–376, https://doi.org/10.1002/lsm.10185.
- Tsai T., Chen H.-M., Wang C.-Y., Tsai J.-C., Chen C.-T., Chiang C.-P. In vivo autofluorescence spectroscopy of oral premalignant and malignant lesions: distortion of fluorescence intensity by submucous fibrosis. Lasers Surg Med 2003; 33(1): 40–47, https://doi.org/10.1002/lsm.10180.
- Majumder S.K., Ghosh N., Kataria S., Gupta P.K. Nonlinear pattern recognition for laser-induced fluorescence diagnosis of cancer. Lasers Surg Med 2003; 33(1): 48–56, https://doi.org/10.1002/lsm.10191.
- Manjunath B.K., Kurein J., Rao L., Krishna C.M., Chidananda M.S., Venkatakrishna K., Kartha V.B. Autofluorescence of oral tissue for optical pathology in oral malignancy. J Photochem Photobiol B 2004; 73(1–2): 49–58, https://doi.org/10.1016/j.jphotobiol.2003.09.004.
- Skandarajah A., Sunny S.P., Gurpur P., Reber C.D., D’Ambrosio M.V., Raghavan N., James B.L., Ramanjinappa R.D., Suresh A., Kandasarma U., Birur P., Kumar V.V., Galmeanu H.C., Itu A.M., Modiga-Arsu M., Rausch S., Sramek M., Kollegal M., Paladini G., Kuriakose M., Ladic L., Koch F., Fletcher D. Mobile microscopy as a screening tool for oral cancer in India: a pilot study. PLoS One 2017; 12(11): e0188440, https://doi.org/10.1371/journal.pone.0188440.
- De Veld D.C., Sterenborg H.J.C., Roodenburg J.L., Witjes M.J. Effects of individual characteristics on healthy oral mucosa autofluorescence spectra. Oral Oncology 2004; 40(8): 815–823, https://doi.org/10.1016/j.oraloncology.2004.02.006.
- Mallia R., Thomas S.S., Mathews A., Kumar R., Sebastian P., Madhavan J., Subhash N. Oxygenated hemoglobin diffuse reflectance ratio for in vivo detection of oral pre-cancer. J Biomed Opt 2008; 13(4): 041306, https://doi.org/10.1117/1.2952007.
- di Fiore M.S.H. Atlas of normal histology. Edited by V.P. Eroschenko. K.M. Varghese Co; Bombay, 1990.
- Unnikrishnan V.K., Nayak R., Bernard R., Priya K.J., Patil A., Ebenezer J., Pai K.M., George S.D., Kartha V.B., Santhosh C. Parameter optimization of a laser-induced fluorescence system for in vivo screening of oral cancer. J Laser Appl 2011; 23(3): 032004, https://doi.org/10.2351/1.3591342.
- Patil A., Rao K.S., Unnikrishnan V.K., Pai K.M., Kartha V.B., Chidangil S. Development of a miniature autofluorescence device for the early diagnosis of squamous cell carcinoma. Proc. SPIE 10411, Clinical and Preclinical Optical Diagnostics 2017, 104110V, https://doi.org/10.1117/12.2282888.
- Krishna C.M., Sockalingum G.D., Kurien J., Rao L., Venteo L., Pluot M., Manfait M., Kartha V.B. Micro-Raman spectroscopy for optical pathology of oral squamous cell carcinoma. Appl Spectrosc 2004; 58(9): 1128–1135.
- Malini R., Venkatakrishna K., Kurien J., Pai K.M., Rao L., Kartha V.B., Krishna C.M. Discrimination of normal, inflammatory, premalignant, and malignant oral tissue: a Raman spectroscopy study. Biopolymers 2006; 81(3): 179–193, https://doi.org/10.1002/bip.20398.
- Kartha V.B., Kurien J., Rai L., Mahato K.K., Krishna C.M., Santhosh C. Diagnosis at the molecular level: analytical laser spectroscopy for clinical applications. In: Kaneco S., Viswanathan B., Funasaka K. Photoelectrochemistry and photobiology in environment, energy and fuel. Research Signapost, Trivendrum; India, 2005; p. 153–221.
- Patil A., Prabhu V., Choudhari K.S., Unnikrishnan V.K., George S.D., Ongole R., Pai K.M., Shetty J.K., Bhat S., Kartha V.B., Chidangil S. Evaluation of high-performance liquid chromatography laser-induced fluorescence for serum protein profiling for early diagnosis of oral cancer. J Biomed Opt 2010; 15(6): 067007, https://doi.org/10.1117/1.3523372.
- Bhat S., Patil A., Rai L., Kartha V.B., Santhosh C. Protein profile analysis of cellular samples from the cervix for the objective diagnosis of cervical cancer using HPLC-LIF. J Chromatogr B Analyt Technol Biomed Life Sci 2010; 878(31): 3225–3230, https://doi.org/10.1016/j.jchromb.2010.09.025.
- Bhat S., Patil A., Rai L., Kartha V.B., Chidangil S. Application of HPLC combined with laser induced fluorescence for protein profile analysis of tissue homogenates in cervical cancer. The Scientific World Journal 2012; 2012: 976421, https://doi.org/10.1100/2012/976421.
- Venkatakrishna K., Kartha V.B., Pai K.M., Krishna C.M., Ravikiran O., Kurian J., Alexander M., Ullas G. HPLC-LIF for early detection of oral cancer. Current Science 2003; 84(4): 551–557.
- Patil A., Choudhari K.S., Unnikrishnan V.K., Shenoy N., Ongole R., Pai K.M., Kartha V.B., Chidangil S. Salivary protein markers: a noninvasive protein profile-based method for the early diagnosis of oral premalignancy and malignancy. J Biomed Opt 2013; 18(10): 101317, https://doi.org/10.1117/1.jbo.18.10.101317.
- Chance B. Photon migration in tissues. Springer; 1990.
- Lackowicz J.R. Principles of fluorescence spectroscopy. Vol. 1. Springer, 2006.
- Gavryushin V., Vaitkus J., Vaitkuviene A. Methodology of medical diagnostics of human tissue by fluorescence. Lithuania J Physics 2000; 40(4): 232–236.
- Gavryushin V., Vaitkuvienė A. Modelling studies of alive tissue fluorophores. Lithuania J Physics 2003.
- Holmstrup P., Vedtofte P., Reibel J., Stoltze K. Oral premalignant lesions: is a biopsy reliable? J Oral Pathol Med 2007; 36(5): 262–266, https://doi.org/10.1111/j.1600-0714.2007.00513.x.