Исследование биохимических показателей митохондрий печени как маркеров гипоксии при регенерации ожоговой раны после экспериментальной термической травмы
Цель исследования — изучение про- и антиоксидантной систем, а также энергообразующей функции митохондрий при комбинированной термической травме.
Материалы и методы. Эксперимент выполнен на крысах-самцах линии Wistar. Сформировано две группы: 1-я, контрольная (n=10), — интактные здоровые животные; 2-я, опытная (n=10), — животные с комбинированной термической травмой (контактный ожог на площади 20% поверхности тела и термоингаляционное воздействие горячим воздухом и продуктами горения). Животных выводили из эксперимента на 1, 7 и 14-е сутки после травмы путем декапитации под наркозом (Золетил + Ксила).
Митохондрии получали путем дифференциального центрифугирования. Для их идентификации проведено электронно-микроскопическое исследование. В митохондриях печени оценивали интенсивность свободнорадикального окисления, активность каталазы, супероксиддисмутазы, сукцинатдегидрогеназы, цитохром с-оксидазы. Результаты исследований обрабатывали с использованием программы Statistica 6.0 (StatSoft Inc., USA).
Результаты. Отмечено повышение интенсивности свободнорадикального окисления в митохондриях печени на 7-е и 14-е сутки после травмы. При этом происходило снижение общей антиоксидантной активности плазмы крови и активности каталазы в эритроцитах при термической травме во все исследуемые сутки после ожога по сравнению с контролем.
К 7-м и 14-м суткам активность супероксиддисмутазы статистически значимо уменьшилась по сравнению со здоровыми животными. Исследование сукцинатдегидрогеназы и цитохром с-оксидазы показало снижение удельной активности ферментов в митохондриях печени на 1, 7 и 14-е сутки после комбинированной термической травмы. Наиболее выраженное снижение активности сукцинатдегидрогеназы и цитохром с-оксидазы отмечено на 14-е сутки после ожога.
Заключение. Выявлены наличие окислительного стресса при комбинированной термической травме, а также комплексный механизм его формирования, подразумевающий как активацию свободнорадикального окисления, так и снижение антиокислительного потенциала с нарушением баланса в функционировании про- и антиоксидантных систем организма. Установлено угнетение энергетического обеспечения клетки, снижение в ней аэробного и усиление анаэробного окисления.
Литература
- Kovalenko O.M. Metabolic intoxication in thermic trauma. Klin Khir 2015; 5: 77–80.
- Jacob S., Herndon D.N., Hawkins H.K., Enkhbaatar P., Cox R.A. Xanthine oxidase contributes to sustained airway epithelial oxidative stress after scald burn. Int J Burns Trauma 2017; 7(6): 98–106.
- Оксидативный стресс и воспаление: патогенетическое партнерство. Под ред. Хурцилавы О.Г., Плужникова Н.Н., Накатиса Я.А. СПб: Изд-во СЗГМУ им. И.И. Мечникова; 2012; 338 с.
- Andreyev A.Y., Kushnareva Y.E., Starkov A.A. Mitochondrial metabolism of reactive oxygen species. Biochemistry 2005; 70(2): 200–214, https://doi.org/10.1007/s10541-005-0102-7.
- Korshunova G.A., Shishkina A.V., Skulachev M.V. Design, synthesis, and some aspects of the biological activity of mitochondria-targeted antioxidants. Biochemistry 2017; 82(7): 760–777, https://doi.org/10.1134/s0006297917070021.
- Georgieva E., Ivanova D., Zhelev Z., Bakalova R., Gulubova M., Aoki I. Mitochondrial dysfunction and redox imbalance as a diagnostic marker of “free radical diseases”. Anticancer Res 2017; 37(10): 5373–5381, https://doi.org/10.21873/anticanres.11963.
- Hoekstra A.S., Bayley J.P. The role of complex II in disease. Biochim Biophys Acta 2013; 1827(5): 543–551, https://doi.org/10.1016/j.bbabio.2012.11.005.
- Воробьев А.В., Перетягин С.П., Размахов А.М., Мартусевич А.К., Вазина И.Р., Квицинская Н.А., Лузан А.С., Стручков А.А. Способ моделирования комбинированной ожоговой травмы. Патент РФ 2408081. 2010.
- Mihara M., Uchiyama M., Fukuzawa K. Thiobarbituric acid value on fresh homogenate of rat as a parameter of lipid peroxidation in aging, CCl4 intoxication, and vitamin E deficiency. Biochem Med 1980; 23(3): 302–311, https://doi.org/10.1016/0006-2944(80)90040-x.
- Сибгатуллина Г.В., Хаертдинова Л.Р., Гумерова Е.А., Акулов А.Н., Костюкова Ю.А., Никонорова Н.А., Румянцева Н.И. Методы определения редокс-статуса культивируемых клеток растений. Казань: Казанский (Приволжский) Федеральный университет; 2011.
- Sirota T.V., Zakharchenko M.V., Kondrashova M.N. Cytoplasmic superoxide dismutase activity is a sensitive indicator of the antioxidant status of the rat liver and brain. Biochem Moscow Suppl Ser B 2013; 7(1): 79–83, https://doi.org/10.1134/s1990750813010101.
- Cooper T.G., Beevers H. Mitochondria and glyoxysomes from castor bean endosperm enzyme constitutents and catalytic capacity. J Biol Chem 1969; 244(13): 3507–3513.
- Schwitzguebel J.-P., Siegenthaler P.-A. Purification of peroxisomes and mitochondria from spinach leaf by percoll gradient centrifugation. Plant Physiol 1984; 75(3): 670–674, https://doi.org/10.1104/pp.75.3.670.
- Waterborg J.H., Matthews H.R. The Lowry method for protein quantitation. Methods Mol Biol 1994; 32: 1–4, https://doi.org/10.1385/0-89603-268-X:1.
- Кантюков C.A., Кривохижина Л.В., Фархутдинов P.P. Состояние процессов свободно-радикального окисления при термической травме разной степени тяжести. Вестник Южно-Уральского государственного университета 2010; 24: 117–124.
- Lazarenko V.A., Lyashev Y.D., Shevchenko N.I. Effect of a synthetic indolicidin analogue on lipid peroxidation in thermal burns. Bull Exp Biol Med 2014; 157(4): 447–449, https://doi.org/10.1007/s10517-014-2587-9.
- Шаповалов С.Г. Комбустиология чрезвычайных ситуаций. Под ред. Алексанина С.С., Алексеева А.А. СПб: Политехникасервис; 2014.
- Zheng J., Huang Y.S., Huang X.Y., Fan P.J., He W.F., Zhang X.R. Effects of antisense p38 α mitogen-activated protein kinase on myocardial cells exposed to hypoxia and burn serum. Zhonghua Shao Shang Za Zhi 2013; 29(3): 267–271.
- Powell C.S., Jackson R.M. Mitochondrial complex I, aconitase, and succinate dehydrogenase during hypoxia-reoxygenation: modulation of enzyme activities by MnSOD. Am J Physiol Lung Cell Mol Physiol 2003; 285(1): L189–L198, https://doi.org/10.1152/ajplung.00253.2002.
- Hwang C.-S., Baek Y.-U., Yim H.-S., Kang S.-O. Protective roles of mitochondrial manganese-containing superoxide dismutase against various stresses in Candida albicans. Yeast 2003; 20(11): 929–941, https://doi.org/10.1002/yea.1004.
- Yang S., Tan T.M.C., Wee A., Leow C.K. Mitochondrial respiratory function and antioxidant capacity in normal and cirrhotic livers following partial hepatectomy. Cell Mol Life Sci 2004; 61(2): 220–229, https://doi.org/10.1007/s00018-003-3357-4.