Сегодня: 18.06.2025
RU / EN
Последнее обновление: 30.04.2025
Диагностика патологий по данным видеоэндоскопии с использованием ансамбля сверточных нейронных сетей

Диагностика патологий по данным видеоэндоскопии с использованием ансамбля сверточных нейронных сетей

С.В. Аксенов, К.А. Костин, А.В. Иванова, J. Liang, А.В. Замятин
Ключевые слова: глубинное обучение; deep learning; сверточная нейронная сеть; классификатор патологий; медицинская диагностика.
2018, том 10, номер 2, стр. 7.

Полный текст статьи

html pdf
4871
2470

Предлагается технология построения классификатора образов патологических образований, полученных с помощью видео­эндоскопии с применением методов глубинного обучения (deep learning). Для обучения и тестирования нейросетевых моделей использованы выборки публичной базы данных CVC-ColonDB и 20 видеозаписей процесса колоноскопии Университета штата Аризона (Феникс, США). Для повышения надежности модели классификации данные зашумлены эффектами, которые присущи съемке современными камерами, используемыми при эндоскопии, а также проведено исследование построения модели при выборках небольшого размера.

При построении классификатора использованы результаты современных исследований моделей сверточных нейронных сетей в медицинской диагностике, что позволяет применять данный подход при проектировании архитектуры сверточных нейронных сетей в зависимости от особенностей задачи. Путем обобщения особенностей архитектур успешных моделей разработан новый подход к формированию безызбыточной сверточной нейронной сети. Согласно предлагаемому подходу, архитектура сети разделяется на блоки с определенными значениями характеристик, чередование которых позволяет сформировать наиболее эффективную структуру.

С использованием предложенного подхода к формированию оптимальной архитектуры сверточных нейронных сетей на основе рекомендаций по выбору значений характеристик сети и ранжирования наиболее значимых из них разработан второй подход к построению адаптивной модели классификатора. Он основывается на формировании ансамбля классификаторов типа «сверточная нейронная сеть». Для обеспечения устойчивости к изменению исходных данных и широкой применимости к различным классам задач классификации изображений в ансамбль входит набор сетей с отличными друг от друга наиболее значимыми факторами.

Экспериментальные исследования показали, что классификатор имеет потенциал улучшения качества распознавания путем разработки ансамбля сверточных нейронных сетей с учетом зависимостей, рассмотренных в предложенном подходе. Полученные результаты работы демонстрируют перспективность применения разработанного подхода для построения моделей классификации образов не только в ходе решения задач медицинской диагностики, но и для общих задач машинного зрения при малой выборке.


Журнал базах данных

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg

SCImago Journal & Country Rank