Сегодня: 25.11.2024
RU / EN
Последнее обновление: 30.10.2024

Органогенез кожи и дисморфогенетические основы патогенеза ее заболеваний (обзор)

Н.В. Яглова, С.С. Обернихин, Д.А. Цомартова, М.Ю. Иванова, Н.Л. Карташкина, Е.В. Черешнева

Ключевые слова: кожа; волосяной фолликул; Wnt-сигналинг; β-катенин; морфогенез; заболевания кожи; опухоли кожи; алопеция.

Изучение гистогенеза эпидермиса и дермы, в том числе и его эпигенетической регуляции — активно развивающаяся область гистологии и эмбриологии, поскольку позволяет прояснить механизмы патогенеза ряда заболеваний кожи с неизвестной этиологией.

Wnt-сигналинг является ключевым регулятором основных морфогенетических процессов — пролиферации и дифференцировки клеток кожи. Трансдукция Wnt-сигналинга осуществляется каноническими и неканоническими путями. Нарушения Wnt-сигналинга в пренатальном и постнатальном развитии приводят к различным заболеваниям кожи и волос как дегенеративного, так и опухолевого характера.

Особенностью нарушений эпигенетической регуляции органогенеза кожи во внутриутробном периоде может быть отдаленность их клинических проявлений в постнатальном развитии.

Важной задачей является выявление факторов, нарушающих регуляцию морфогенетических процессов. Доказана роль активации иммунной системы матери в ранние сроки беременности в развитии транзиторной алопеции потомства у мышей. Установлена связь между нарушениями гистогенеза эпидермиса и дермы и алопецией. Показана возможность формирования регионарных дисморфогенетических изменений, что указывает на необходимость изучения темпов и особенностей развития кожи различных частей тела.


Введение

Среди заболеваний кожи и ее придатков большую часть составляют нозологии с неизвестной этиологией и недостаточно изученным патогенезом [1–7]. Достижения современной эмбриологии, гистологии и молекулярной биологии вносят существенный вклад в понимание механизмов гистогенеза эпидермиса и дермы и позволяют целенаправленно изучать роль эпигенетических механизмов регуляции морфогенетических процессов, нарушение которых лежит в основе развития ряда заболеваний кожи [8, 9]. Регуляция внутриклеточных сигнальный путей, которые управляют различными процессами морфогенеза, такими как пролиферация, дифференцировка, миграция и апикально-базальная поляризация клеток эпидермиса, определяется секретируемыми Wnt-белками, в первую очередь β-катенином, являющимся активатором канонического Wnt-сигналинга [10–15].

Роль Wnt-сигналинга в пренатальном развитии кожи

Известно, что после гаструляции поверхность эмбриона представлена одним слоем эктодермы, которая в дальнейшем формирует нервную трубку и кожную эктодерму [16]. При отсутствии сигнала фактора роста фибробластов клетки эктодермы начинают экспрессировать костные морфогенетические белки и детерминируются для образования эпидермиса. И наоборот, развитие нервной системы возникает тогда, когда эктодерма способна принимать и преоб­разовывать сигналы, активирующие фактор роста фибробластов, которые затем ингибируют костные морфогенетические белки [17–21]. Активность костных морфогенетических белков играет решающую роль в формировании пограничной зоны между кожной эктодермой и нейроэктодермой [22]. Ключевым регулятором дивергенции является Wnt-сигналинг, который блокирует способность эктодермы реагировать на фактор роста фибробластов.

Трансдукция Wnt-cигналинга происходит кано­ни­чес­ким и неканоническим путями [23–30]. Не­кано­ническая трансдукция Wnt-cигналинга происходит через G-белки, такие как Rho/Rac, контролирующие полярность клеток путем ремоделирования актинового цитоскелета или путем изменения внутриклеточной концентрации ионов кальция [24, 31]. В каноническом Wnt-пути ключевым транскрипционным коактиватором и трансмиттером внеклеточного сигнала, активирующего гены-мишени, является β-катенин. Транскрипционный активатор β-катенин стабилизируется при стимуляции Wnt, после чего проникает в ядро, связывается с фактором TCF/LEF1 (T-cell factor/lymphoid enhancer factor 1) и обеспечивает активацию Wnt-чувствительных генов-мишеней [11–13].

Существует несколько различных белков Wnt и рецепторов у позвоночных, и их экспрессия в пространстве и времени регулируется во время развития [10, 32]. По всей вероятности, один белок Wnt активирует комбинацию нескольких сигнальных каскадов, которые могут действовать независимо или совместно. Добавление большего количества уровней сложности, кофакторов, секретируемых антагонистов и корецепторов передачи сигналов Wnt модулирует как канонические, так и неканонические действия. Известно, что неканонические пути Wnt обладают способностью ингибировать сигнальную связь, зависящую от β-катенина, однако механизм, лежащий в основе этого торможения, остается неясным. Предлагаемые объяснения включают конкуренцию Wnt-лигандов для связывания с их рецепторами [33], подавление β-катенина с помощью E3-убиквитин лигазы Siah2 [34] или ингибирование транскрипционной активности Wnt/β-катенин-сигналинга через TAK1-NLK(TGF-b activated kinase 1–nemo-like kinase)-опосредованное фосфорилирование T-клеточных факторов [35].

На ранних стадиях развития кожи между эмбриональным эпидермисом и дермой возникают динамические перекрестные сигналы. Связь между тканями обусловливает формирование базальной мембраны, стратификацию эпидермиса и индукцию волосяных фолликулов (ВФ) [36]. Клетки дифференцируются в кератиноциты и образуют базальный слой эмбрионального эпидермиса. Кератиноциты во вновь образованном эмбриональном базальном слое заменяют экспрессию кератина типов 8/18 на кератины типов 5/14 [37]. На начальном этапе эпидермальной стратификации базальные клетки образуют переходный слой, называемый перидермом, который защищает их от постоянного воздействия амниотической жидкости [38]. Следующий слой эпидермиса, образовавшийся между базальным слоем и перидермой, называется промежуточным слоем, развитие которого связано с асимметричным делением эпидермальных базальных клеток [39]. На молекулярном уровне процесс эпидермальной стратификации организуется несколькими регуляторами транскрипции и сигнальными путями [40–42]. Когда программа стратификации завершена, эпидермис состоит из внутреннего слоя базальных клеток с пролиферативным потенциалом и супрабазальными слоями дифференцированных клеток.

Роль Wnt-сигналинга в формировании и развитии волосяного фолликула

Морфогенез ВФ включает в себя три основных этапа: формирование плакоды волос, органогенез и цитодифференцировку [43, 44]. Последовательные события во время морфогенеза регулируются сигналами, передаваемыми между дермой и эпидермисом [45, 46]. Среди этих сигналов путь Wnt считается основным регулятором.

Перед образованием плакоды кожные фибробласты получают Wnt-сигналы от эпидермиса, который вызывает агрегацию эпидермальных базальных клеток, что и приводит к образованию плакод [47–50]. Примечательно, что паттерны индукции ВФ зависят от конкуренции между медленно диффундирующими Wnt-лигандами и более быстрыми диффузными ингибиторами Wnt [51].

После начальной индукции развивающаяся плакода продуцирует лиганды Wnt для индукции подстилающих фибробластов с образованием дермального конденсата [52]. Одновременно плакода непрерывно растет, внедряясь в слой дермы в виде инвагинаций, а затем соединяется с дермальным конденсатом, образуя первую структуру органогенеза ВФ — первичный волосяной росток. Эпидермальные клетки продолжают проникать в дерму и формируют многослойную удлиненную колонку, называемую волосяным тяжем. Между тем дермальный конденсат становится сферическим дермальным сосочком. Волосяной тяж утолщается в нижнем конце, чтобы сформировать волосяную луковицу. Когда первичный фолликул врастает в волосяной тяж, визуализируются различные эпидермальные слои, которые приводят к появлению волосяного стержня. Как только рост ВФ достигает подкожного слоя, запускается программа цитодифференцировки. На этом этапе дермальный сосочек сначала становится тоньше и полностью закрывается и начинает формироваться сальная железа в верхней части ВФ. Наконец полностью сформированный волосяной вал выступает на поверхности кожи, а ВФ достигает максимальной длины [43]. Разные этапы развития ВФ легко распознать по их морфологическим и биохимическим различиям [53].

Внутри каждого зрелого ВФ имеются семь концентрических колец из терминально дифференцированных клеток, которые являются производными клеточного матрикса. Каждое кольцо обладает характерной ультраструктурой. Передача Wnt/β-катенин-сигналинга сначала регулируется равномерно в верхнем слое дермы, а затем фокально как в волосистой плакоде, так и в подстилающем дермальном конденсате [54–57]. Когда сигнализация Wnt/β-катенин отключается, образование ВФ блокируется [58–60]. Избыточная экспрессия стабильной формы β-катенина или LEF1 индуцирует образование ВФ de novo [61, 62].

Wnt-сигналинг в волосяных фолликулах в постнатальном периоде развития

В постнатальной коже зрелые ВФ подвергаются повторным циклам роста [63]. Подобно морфогенезу ВФ инициирование новой фазы роста и, как следствие, пролиферация, дифференцировка и регресс фолликула связаны с широкими взаимодействиями между дермальными и эпидермальными клетками [64]. В многочисленных исследованиях [65–72] высказано предположение, что те же сигнальные пути, которые активны во время эмбриогенеза ВФ, повторно используются при циклических процессах, происходящих в постнатальном ВФ. В частности, показано, что Wnt/β-катенин-сигналинг играет решающую роль на нескольких этапах цикла развития волос, начиная с самых ранних — этапах перехода от покоя к росту и дифференцировке ВФ.

В постнатальном периоде эпидермис непрерывно регенерирует за счет пролиферации базальных клеток межфолликулярного эпидермиса (МЭ). Этот пул клеток МЭ дает начало клеткам, которые будут дифференцироваться в супрабазальные клетки, мигрируя в вышележащие слои. Во время этого процесса число эпидермальных клеток остается постоянным, так как количество вновь генерированных клеток точно компенсирует количество клеток, которые дифференцируются или погибают [73].

Чтобы объяснить, как стволовые клетки базального слоя пополняют клетки МЭ, предложено две модели — иерархическая и стохастическая [74]. Иерархическая модель предполагает, что медленный цикл стволовых клеток, происходящий в каждой эпидермальной пролиферативной единице МЭ, генерирует короткоживущие транзитно-амплифицирующие клетки, которые впоследствии дают начало дифференцированным клеткам. Стохастическая модель заключается в том, что прародители базального слоя МЭ имеют равный потенциал для генерации дочерних клеток, которые остаются в качестве предшественников или дифференцируются в супрабазальные клетки [75].

В развивающемся эпидермисе высокий уровень передачи сигналов Wnt/β-катенин необходим для индукции ВФ. Ослабление таких сигналов от эпидермиса ухудшает образование ВФ, но не влияет на целостность МЭ [76]. Примечательно, что утрата β-катенина в МЭ даже вызывает его гиперпролиферацию [77]. Тем не менее исследования трассировки клеточных линий показывают наличие сигнальной активности Wnt/β-катенина в базальных клетках эпидермиса гладкой кожи. Когда β-катенин истощается в этих клетках, пролиферативная способность эпидермиса резко снижается [78, 79]. Разные результаты пролиферации эпидермиса могут быть частично объяснены фундаментальными различиями между эпидермисом волосистой и гладкой кожи, поскольку считается, что эпидермальная гиперпролиферация волосистой части кожи может частично быть результатом воспалительного ответа на распад ВФ [80].

Роль нарушений Wnt/β-катенин-сигналинга в патогенезе заболеваний кожи

Учитывая важную роль передачи сигналов Wnt/β-катенина в развитии кожи и гомеостазе, легко понять, что нарушения активности сигнальных путей могут приводить к порокам развития и заболеваниям [81–84]. Избыточная активация передачи этих сигналов приводит к различным опухолям у трансгенных мышей. В волосяном фолликуле конститутивная экспрессия стабилизированного β-катенина приводит к образованию пиломатриком, которые представляют собой плотно упакованные доброкачественные опухоли с центром из клеток волосяного тяжа, окруженных клетками матрикса, или трихофолликулом, которые регрессируют, когда активация пути прекращается [82]. Многие человеческие пиломатрикомы также содержат мутации, стабилизирующие β-катенин [85]. Напротив, когда Wnt/β-катенин-сигналинг у трансгенных мышей подавляется, опухоли сальных желез развиваются с более высокой частотой [59, 86]. Это происходит и в опухолях человека, так как треть из них содержит мутации, которые также блокируют связывание β-катенина [87].

Исследования показали, что неблагоприятные условия внешней среды во время беременности могут отрицательно влиять на развитие и функционирование различных органов потомства. Эти проявления могут иметь отдаленные последствия и даже закрепляться как наследственный признак [88–90]. Нарушения экспрессии β-катенина в пренатальном и постнатальном развитии обусловливают дисморфогенетические нарушения и могут служить основой патогенеза ряда заболеваний (см. рисунок). Так, снижение функции β-катенина в эмбриональном периоде развития может привести к снижению пролиферации эпителиоцитов волосяной луковицы [77], нарушению регенерации ВФ [91] и снижению пролиферации кератиноцитов гладкой кожи [52, 87]. И наоборот, восстановление функции β-катенина в эмбриональном периоде приводит в постнатальном периоде к раннему переходу в анаген [92, 93], гиперплазии и формированию кист ВФ [56].


yaglova-ris.jpg Дисморфогенетические последствия нарушений канонического Wnt/β-катенин-сигна­линга в эпидермисе и волосяных фолликулах мыши

Врожденные дефекты ВФ достаточно редки и обычно вызываются мутациями в генах, кодирующих кератины и другие структурные белки [94]. К приобретенным дефектам относятся алопеции, которые могут иметь как воспалительную, так и невоспалительную этиологию [44, 95, 96]. Воспалительная алопеция может быть результатом бактериальной инфекции, дерматофитии, укусов внешних паразитов, аутоиммунных заболеваний, травм или воздействия токсинов (например, ртути, таллия или йода). Причинами невоспалительных заболеваний, которые ведут к выпадению волос, служат дефицит питательных веществ, эндокринные нарушения, роды, анемия и прием цитостатических препаратов [97].

Одной из важных задач является установление конкретных факторов, способных изменять эпигенетическую регуляцию в пренатальном и постнатальном периодах онтогенеза человека. Выявлено [98], что краткосрочная активация иммунной системы матери на ранних сроках беременности приводит к возникновению транзиторной, передающейся по наследству алопеции у потомства и что нарушения развития кожи и ее производных обусловлены действием цитокинов, продуцируемых клетками иммунной системы матери. Исследования показали, что на 17-е сутки постнатального развития у потомства начиналось выпадение волос в области спины и брюха, которое в течение нескольких суток приводило к полной утрате шерстного покрова в данных областях. При гистологическом исследовании кожи в этих зонах выявлено образование кистозно-расширенных ВФ, содержащих изломанные стержни волос, а также уменьшение количества ВФ, замедление формирования соединительнотканных компонентов дермы, пониженное количество клеток в дерме, повышение содержания нейтрофилов в дерме при развитии алопеции. На голове и лапах шерстный покров сохранялся, и в этих участках строение дермы характеризовалось более высоким содержанием аморфного компонента межклеточного матрикса. Восстановление шерстного покрова у таких животных происходило параллельно с увеличением толщины дермы и содержания в ней аморфного компонента межклеточного матрикса, что подтверждает патогенетическую роль незрелости дермы в нарушении роста волос [99, 100].

Наиболее вероятным механизмом снижения количества ВФ в коже потомства при активации иммунной системы материнского организма является нарушение Wnt-cигналов, обеспечивающих закладку ВФ. Отсутствие изменений в коже головы указывает на регионарные различия регуляции гистогенеза кожного покрова. Имеются данные, что при наличии общих этапов формирования эпидермиса и дермы увеличение толщины и количества слоев эпидермиса кожи головы происходит быстрее, чем кожи туловища вследствие разных темпов течения основных морфогенетических процессов — пролиферации и апоптоза [101, 102]. Следовательно, и нарушения транскрипционной регуляции морфогенетических процессов в коже эмбриона могут носить не универсальный, а локальный характер.

Заключение

Исследования регуляции морфогенетических процессов в коже указывают на важную роль эпигенетической регуляции как морфогенетического, так и дисморфогенетического факторов. Нарушения канонического Wnt-cигналинга во внутриутробном периоде могут лежать в основе патогенеза различных заболеваний кожи и ее придатков опухолевого и неопухолевого характера. Результаты многочисленных работ показывают, что особенностью нарушений эпигенетической регуляции органогенеза кожи во внутриутробном периоде может быть отдаленность их клинических проявлений в постнатальном развитии. Эти данные указывают на необходимость дальнейших поисков причин нарушения регуляции и учета их в анамнезе пациентов в качестве возможных этиологических факторов ряда заболеваний кожи.

Финансирование исследования. Работа не финансировалась какими-либо источниками.

Конфликт интересов отсутствует.


Литература

  1. Moretta G., De Luca E.V., Di Stefani A. Management of refractory pityriasis rubra pilaris: challenges and solutions. Clin Cosmet Investig Dermatol 2017; 10: 451–457, https://doi.org/10.2147/ccid.s124351.
  2. Govoni M., Bortoluzzi A., Rossi D., Modena V. How I treat patients with adult onset Still’s disease in clinical practice. Autoimmun Rev 2017; 16(10): 1016–1023, https://doi.org/10.1016/j.autrev.2017.07.017.
  3. Pereira M.P., Ständer S. Chronic pruritus: current and emerging treatment options. Drugs 2017; 77(9): 999–1007, https://doi.org/10.1007/s40265-017-0746-9.
  4. van Geel N., Speeckaert R. Segmental vitiligo. Dermatol Clin 2017; 35(2): 145–150, https://doi.org/10.1016/j.det.2016.11.005.
  5. Takeshita J., Grewal S., Langan S.M., Mehta N.N., Ogdie A., Van Voorhees A.S., Gelfand J.M. Psoriasis and comorbid diseases: epidemiology. J Am Acad Dermatol 2017; 76(3): 377–390, https://doi.org/10.1016/j.jaad.2016.07.064.
  6. Perera E., Yip L., Sinclair R. Alopecia areata. Curr Probl Dermatol 2015; 47: 67–75, https://doi.org/10.1159/000369406.
  7. Redler S., Messenger A.G., Betz R.C. Genetics and other factors in the aetiology of female pattern hair loss. Exp Dermatol 2017; 26(6): 510–517, https://doi.org/10.1111/exd.13373.
  8. Miranda B.H., Charlesworth M.R., Tobin D.J., Sharpe D.T., Randall V.A. Androgens trigger different growth responses in genetically identical human hair follicles in organ culture that reflect their epigenetic diversity in life. FASEB J 2018; 32(2): 795–806, https://doi.org/10.1096/fj.201700260rr.
  9. Wilms C., Kroeger C.M., Hainzl A., Banik I., Bruno C., Krikki I., Farsam V., Wlaschek M., Gatzka M.V. MYSM1/2A-DUB is an epigenetic regulator in human melanoma and contributes to tumor cell growth. Oncotarget 2017; 8(40): 67287–67299, https://doi.org/10.18632/oncotarget.18617.
  10. Logan C.Y., Nusse R. The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 2004; 20: 781–810, https://doi.org/10.1146/annurev.cellbio.20.010403.113126.
  11. Nusse R. Wnt signaling and stem cell control. Cell Research 2008; 18(5): 523–527, https://doi.org/10.1038/cr.2008.47.
  12. Clevers H., Nusse R. Wnt/beta-catenin signaling and disease. Cell 2012; 149(6): 1192–1205, https://doi.org/10.1016/j.cell.2012.05.012.
  13. Clevers H. Wnt/beta-catenin signaling in development and disease. Cell 2006; 127(3): 469–480, https://doi.org/10.1016/j.cell.2006.10.018.
  14. van Amerongen R., Nusse R. Towards an integrated view of Wnt signaling in development. Development 2009; 136(19): 3205–3214, https://doi.org/10.1242/dev.033910.
  15. Polakis P. The many ways of Wnt in cancer. Curr Opin Genet Dev 2007; 17(1): 45–51, https://doi.org/10.1016/j.gde.2006.12.007.
  16. Hardy M.H. The secret life of the hair follicle. Trends Genet 1992; 8(1): 55–61, https://doi.org/10.1016/0168-9525(92)90044-5.
  17. Stern C. Neural induction: old problem, new findings, yet more questions. Development 2005; 132(9): 2007–2021, https://doi.org/10.1242/dev.01794.
  18. Wilson S.I., Rydström A., Trimborn T., Willert K., Nusse R., Jessell T.M., Edlund T. The status of Wnt signalling regulates neural and epidermal fates in the chick embryo. Nature 2001; 411: 325–330, https://doi.org/10.1038/35077115.
  19. Harland R. Neural induction. Curr Opin Genet Dev 2000; 10(4): 357–362, https://doi.org/10.1016/s0959-437x(00)00096-4.
  20. Kobielak K., Stokes N., de la Cruz J., Polak L., Fuchs E. Loss of a quiescent niche but not follicle stem cells in the absence of bone morphogenetic protein signaling. Proc Natl Acad Sci USA 2007; 104(24): 10063–10068, https://doi.org/10.1073/pnas.0703004104.
  21. Fuchs E. Scratching the surface of skin development. Nature 2007; 445(7130): 834–842, https://doi.org/10.1038/nature05659.
  22. Streit A. Early development of the cranial sensory nervous system: from a common field to individual placodes. Dev Biol 2004; 276(1): 1–15, https://doi.org/10.1016/j.ydbio.2004.08.037.
  23. Angers S., Moon R.T. Proximal events in Wnt signal transduction. Nat Rev Mol Cell Biol 2009; 10(7): 468–477, https://doi.org/10.1038/nrm2717.
  24. Seifert J.R.K., Mlodzik M. Frizzled/PCP signalling: a conserved mechanism regulating cell polarity and directed motility. Nat Rev Genet 2007; 8(2): 126–138, https://doi.org/10.1038/nrg2042.
  25. Wang J., Sinha T., Wynshaw-Boris A. Wnt signaling in mammalian development: lessons from mouse genetics. Cold Spring Harb Perspect Biol 2012; 4(5): a007963, https://doi.org/10.1101/cshperspect.a007963.
  26. Bayly R., Axelrod J.D. Pointing in the right direction: new developments in the field of planar cell polarity. Nat Rev Genet 2011; 12(6): 385–391, https://doi.org/10.1038/nrg2956.
  27. Stoick-Cooper C.L., Moon R.T., Weidinger G. Advances in signaling in vertebrate regeneration as a prelude to regenerative medicine. Genes Dev 2007; 21(11): 1292–1315, https://doi.org/10.1101/gad.1540507.
  28. Zallen J.A. Planar polarity and tissue morphogenesis. Cell 2007; 129(6): 1051–1106, https://doi.org/10.1016/j.cell.2007.05.050.
  29. Lai S.L., Chien A.J., Moon R.T. Wnt/Fz signaling and the cytoskeleton: potential roles in tumorigenesis. Cell Res 2009; 19(5): 532–545, https://doi.org/10.1038/cr.2009.41.
  30. Simons M., Mlodzik M. Planar cell polarity signaling: from fly development to human disease. Annu Rev Genet 2008; 42: 517–540, https://doi.org/10.1146/annurev.genet.42.110807.091432.
  31. Kohn A.D., Moon R.T. Wnt and calcium signaling: β-catenin-independent pathways. Cell Calcium 2005; 38(3–4): 439–446, https://doi.org/10.1016/j.ceca.2005.06.022.
  32. Komiya Y., Habas R. Wnt signal transduction pathways. Organogenesis 2008; 4(2): 68–75, https://doi.org/10.4161/org.4.2.5851.
  33. Grumolato L., Liu G., Mong P., Mudbhary R., Biswas R., Arroyave R., Vijayakumar S., Economides A.N., Aaronson S.A. Canonical and noncanonical Wnts use a common mechanism to activate completely unrelated coreceptors. Genes Dev 2010; 24(22): 2517–2530, https://doi.org/10.1101/gad.1957710.
  34. Topol L., Jiang X., Choi H., Garrett-Beal L., Carolan P.J., Yang Y. Wnt-5a inhibits the canonical Wnt pathway by promoting GSK-3-independent beta-catenin degradation. J Cell Biol 2003; 162(1): 899–908, https://doi.org/10.1083/jcb.200303158.
  35. Ishitani T., Ninomiya-Tsuji J., Nagai S., Nishita M., Meneghini M., Barker N., Waterman M., Bowerman B., Clevers H., Shibuya H., Matsumoto K. The TAK1-NLK-MAPK-related pathway antagonizes signalling between beta-catenin and transcription factor TCF. Nature 1999; 399(6738): 798–802, https://doi.org/10.1038/21674.
  36. Candi E., Schmidt R., Melino G. The cornified envelope: a model of cell death in the skin. Nat Rev Mol Cell Biol 2005; 6(4): 328–340, https://doi.org/10.1038/nrm1619.
  37. Byrne C., Tainsky M., Fuchs E. Programming gene expression in developing epidermis. Development 1994; 120(9): 2369–2383.
  38. M’Boneko V., Merker H.J. Development and morphology of the periderm of mouse embryos (days 9–12 of gestation). Acta Anat 1988; 133(4): 325–336, https://doi.org/10.1159/000146662.
  39. Lechler T., Fuchs E. Asymmetric cell divisions promote stratification and differentiation of mammalian skin. Nature 2005; 437(7056): 275–280, https://doi.org/10.1038/nature03922.
  40. Koster M.I., Roop D.R. Mechanisms regulating epithelial stratification. Annu Rev Cell Dev Biol 2007; 23(1): 93–113, https://doi.org/10.1146/annurev.cellbio.23.090506.123357.
  41. Fuchs E., Raghavan S. Getting under the skin of epidermal morphogenesis. Nat Rev Genet 2002; 3(3): 199–209, https://doi.org/10.1038/nrg758.
  42. Liu S., Zhang H., Duan E. Epidermal development in mammals: key regulators, signals from beneath, and stem cells. Int J Mol Sci 2013; 14(6): 10869–10895, https://doi.org/10.3390/ijms140610869.
  43. Schmidt-Ullrich R., Paus R. Molecular principles of hair follicle induction and morphogenesis. Bioessays 2005; 27(3): 247–261, https://doi.org/10.1002/bies.20184.
  44. Paus R., Müller-Röver S., Van Der Veen C., Maurer M., Eichmüller S., Ling G., Hofmann U., Foitzik K., Mecklenburg L., Handjiski B. Comprehensive guide for the recognition and classification of distinct stages of hair follicle morphogenesis. J Invest Dermatol 1999; 113(4): 523–532, https://doi.org/10.1046/j.1523-1747.1999.00740.x.
  45. Zhu X.J., Liu Y., Dai Z.M., Zhang X., Yang X., Li Y., Qiu M., Fu J., Hsu W., Chen Y., Zhang Z. BMP-FGF signaling axis mediates Wnt-induced epidermal stratification in developing mammalian skin. PLoS Genet 2014; 10(10): e1004687, https://doi.org/10.1371/journal.pgen.1004687.
  46. Popp T., Steinritz D., Breit A., Deppe J., Egea V., Schmidt A., Gudermann T., Weber C., Ries C. Wnt5a/beta-catenin signaling drives calciuminduced differentiation of human primary keratinocytes. J Invest Dermatol 2014; 134(8): 2183–2191, https://doi.org/10.1038/jid.2014.149.
  47. Hu B., Lefort K., Qiu W., Nguyen B.C., Rajaram R.D., Castillo E., He F., Chen Y., Angel P., Brisken C., Dotto G.P. Control of hair follicle cell fate by underlying mesenchyme through a CSL-Wnt5a-FoxN1 regulatory axis. Genes Dev 2010; 24(14): 1519–1532, https://doi.org/10.1101/gad.1886910.
  48. Guo N., Hawkins C., Nathans J. Frizzled6 controls hair patterning in mice. Proc Natl Acad Sci USA 2004; 101(25): 9277–9281, https://doi.org/10.1073/pnas.0402802101.
  49. Devenport D., Fuchs E. Planar polarization in embryonic epidermis orchestrates global asymmetric morphogenesis of hair follicles. Nat Cell Biol 2008; 10(11): 1257–1268, https://doi.org/10.1038/ncb1784.
  50. Devenport D., Oristian D., Heller E., Fuchs E. Mitotic internalization of planar cell polarity proteins preserves tissue polarity. Nat Cell Biol 2011; 13(8): 893–902, https://doi.org/10.1038/ncb2284.
  51. Sick S., Reinker S., Timmer J., Schlake T. WNT and DKK determine hair follicle spacing through a reaction-diffusion mechanism. Science 2006; 314(5804): 1447–1450, https://doi.org/10.1126/science.1130088.
  52. Chen D., Jarrell A., Guo C., Lang R., Atit R. Dermal beta-catenin activity in response to epidermal Wnt ligands is required for fibroblast proliferation and hair follicle initiation. Development 2012; 139(8): 1522–1533, https://doi.org/10.1242/dev.076463.
  53. Müller-Röver S., Handjiski B., van der Veen C., Eichmüller S., Foitzik K., McKay I.A., Stenn K.S., Paus R. A comprehensive guide for the accurate classification of murine hair follicles in distinct hair cycle stages. J Invest Dermatol 2001; 117(1): 3–15, https://doi.org/10.1046/j.0022-202x.2001.01377.x.
  54. Cui C.Y., Kunisada M., Piao Y., Childress V., Ko M.S., Schlessinger D. Dkk4 and Eda regulate distinctive developmental mechanisms for subtypes of mouse hair. PLoS One 5(4): e10009, https://doi.org/10.1371/journal.pone.0010009.
  55. Millar S.E. Molecular mechanisms regulating hair follicle development. J Invest Dermatol 2002; 118(2): 216–225, https://doi.org/10.1046/j.0022-202x.2001.01670.x.
  56. DasGupta R., Fuchs E. Multiple roles for activated LEF/TCF transcription complexes during hair follicle development and differentiation. Development 1999; 126(20): 4557–4568.
  57. Zhou P., Byrne C., Jacobs J. Fuchs E. Lymphoid enhancer factor 1 directs hair follicle patterning and epithelial cell fate. Genes Dev 1995; 9(6): 700–713, https://doi.org/10.1101/gad.9.6.700.
  58. Huelsken J., Vogel R., Erdmann B., Cotsarelis G., Birchmeier W. Beta-catenin controls hair follicle morphogenesis and stem cell differentiation in the skin. Cell 2001; 105(4): 533–545, https://doi.org/10.1016/s0092-8674(01)00336-1.
  59. Niemann C., Owens D.M., Hülsken J. Birchmeier W., Watt F.M. Expression of DeltaNLef1 in mouse epidermis results in differentiation of hair follicles into squamous epidermal cysts and formation of skin tumours. Development 2002; 129(1): 95–109.
  60. Andl T., Reddy S.T., Gaddapara T., Millar S.E. Wnt signals are required for the initiation of hair follicle development. Dev Cell 2002; 2(5): 643–653, https://doi.org/10.1016/s1534-5807(02)00167-3.
  61. Gat U., DasGupta R., Degenstein L., Millar S.E. De novo hair follicle morphogenesis and hair tumors in mice expressing a truncated betacatenin in skin. Cell 1998; 95(5): 605–614, https://doi.org/10.1016/s0092-8674(00)81631-1.
  62. Lo Celso C., Prowse D.M., Watt F.M. Transient activation of beta-catenin signalling in adult mouse epidermis is sufficient to induce new hair follicles but continuous activation is required to maintain hair follicle tumours. Development 2004; 131(8): 1787–1799, https://doi.org/10.1242/dev.01052.
  63. Schneider M.R., Schmidt-Ullrich R., Paus R. The hair follicle as a dynamic miniorgan. Curr Biol 2009; 19(3): R132–R142, https://doi.org/10.1016/j.cub.2008.12.005.
  64. Ahtiainen L., Uski I., Thesleff I., Mikkola M. Early epithelial signaling center governs tooth budding morphogenesis. J Cell Biol 2016; 214(6): 753–767, https://doi.org/10.1083/jcb.201512074.
  65. Hsu Y.C., Li L., Fuchs E. Emerging interactions between skin stem cells and their niches. Nat Med 2014; 20(8): 847–856, https://doi.org/10.1038/nm.3643.
  66. Braun K.M., Watt F.M. Epidermal label-retaining cells: background and recent applications. J Investig Dermatol Symp Proc 2004; 9(3): 196–201, https://doi.org/10.1111/j.1087-0024.2004.09313.x.
  67. Mascré G., Dekoninck S., Drogat B., Youssef K.K., Broheé S., Sotiropoulou P.A., Simons B.D., Blanpain C. Distinct contribution of stem and progenitor cells to epidermal maintenance. Nature 2012; 489(7415): 257–262, https://doi.org/10.1038/nature11393.
  68. Sada A., Jacob F., Leung E., Wang S., White B.S., Shalloway D., Tumbar T. Defining the cellular lineage hierarchy in the interfollicular epidermis of adult skin. Nat Cell Biol 2016; 18(6): 619–631, https://doi.org/10.1038/ncb3359.
  69. Rompolas P., Mesa K.R., Kawaguchi K., Park S., Gonzalez D., Brown S., Boucher J., Klein A.M., Greco V. Spatiotemporal coordination of stem cell commitment during epidermal homeostasis. Science 2016; 352(6292): 1471–1474, https://doi.org/10.1126/science.aaf7012.
  70. Roy E., Neufeld Z., Cerone L., Wong H.Y., Hodgson S., Livet J., Khosrotehrani K. Bimodal behaviour of interfollicular epidermal progenitors regulated by hair follicle position and cycling. EMBO J 2016; 35(24): 2658–2670, https://doi.org/10.15252/embj.201693806.
  71. Merrill B.J., Gat U., DasGupta R., Fuchs E. Tcf3 and Lef1 regulate lineage differentiation of multipotent stem cells in skin. Genes Dev 2001; 15(13): 1688–1705, https://doi.org/10.1101/gad.891401.
  72. Barrott J.J., Cash G.M., Smith A.P., Barrow J.R., Murtaugh L.C. Deletion of mouse Porcn blocks Wnt ligand secretion and reveals an ectodermal etiology of human focal dermal hypoplasia/Goltz syndrome. Proc Natl Acad Sci USA 2011; 108(31): 12752–12757, https://doi.org/10.1073/pnas.1006437108.
  73. Blanpain C., Fuchs E. Epidermal homeostasis: a balancing act of stem cells in the skin. Nat Rev Mol Cell Biol 2009; 10(3): 207–217, https://doi.org/10.1038/nrm2636.
  74. Singh R., Chen C., Phelps R.G., Elston D.M. Stem cells in the skin and their role in oncogenesis. J Eur Acad Dermatol Venereol 2014; 28(5): 542–549, https://doi.org/10.1111/jdv.12248.
  75. Clayton E., Doupé D.P., Klein A.M., Winton D.J., Simons B.D., Jones P.H. A single type of progenitor cell maintains normal epidermis. Nature 2007; 446(7132): 185–189, https://doi.org/10.1038/nature05574.
  76. MacDonald B.T., Tamai K., He X. Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell 2009; 17(1): 9–26, https://doi.org/10.1016/j.devcel.2009.06.016.
  77. Choi Y.S., Zhang Y., Xu M., Yang Y., Ito M., Peng T., Cui Z., Nagy A., Hadjantonakis A.K., Lang R.A., Cotsarelis G., Andl T., Morrisey E.E., Millar S.E. Distinct functions for Wnt/beta-catenin in hair follicle stem cell proliferation and survival and interfollicular epidermal homeostasis. Cell Stem Cell 2013; 13(6): 720–733, https://doi.org/10.1016/j.stem.2013.10.003.
  78. Lim X., Tan S.H., Koh W.L., Chau R.M., Yan K.S., Kuo C.J., van Amerongen R., Klein A.M., Nusse R. Interfollicular epidermal stem cells self-renew via autocrine Wnt signaling. Science 2013; 342(6163): 1226–1230, https://doi.org/10.1126/science.1239730.
  79. Augustin I., Gross J., Baumann D., Korn C., Kerr G., Grigoryan T., Mauch C., Birchmeier W., Boutros M. Loss of epidermal Evi/Wls results in a phenotype resembling psoriasiform dermatitis. J Exp Med 2013; 210(9): 1761–1777, https://doi.org/10.1084/jem.20121871.
  80. Watt F.M., Collins C.A. Role of beta-catenin in epidermal stem cell expansion, lineage selection, and cancer. Cold Spring Harbor Symp Quant Biol 2008; 73: 503–512, https://doi.org/10.1101/sqb.2008.73.011.
  81. Klaus A., Birchmeier W. Wnt signalling and its impact on development and cancer. Nat Rev Cancer 2008; 8(5): 387–398, https://doi.org/10.1038/nrc2389.
  82. Kalinin A., Marekov L.N., Steinert P.M. Assembly of the epidermal cornified cell envelope. J Cell Sci 2001; 114(Pt 17): 3069–3070.
  83. Senoo M., Pinto F., Crum C.P., McKeon F. p63 is essential for the proliferative potential of stem cells in stratified epithelia. Cell 2007; 129(3): 523–536, https://doi.org/10.1016/j.cell.2007.02.045.
  84. Holland J.D., Klaus A., Garratt A.N., Birchmeier W. Wnt signaling in stem and cancer stem cells. Curr Opin Cell Biol 2013; 25(2): 254–264, https://doi.org/10.1016/j.ceb.2013.01.004.
  85. Chan E.F., Gat U., McNiff J.M., Fuchs E. A common human skin tumour is caused by activating mutations in β-catenin. Nat Genet 1999; 21(4): 410–413, https://doi.org/10.1038/7747.
  86. Owens D.M., Watt F.M. Contribution of stem cells and differentiated cells to epidermal tumours. Nat Rev Cancer 2003; 3(6): 444–451, https://doi.org/10.1038/nrc1096.
  87. Takeda H., Lyle S., Lazar A.J.F., Zouboulis C.C., Smyth I., Watt F.M. Human sebaceous tumors harbor inactivating mutations in LEF1. Nat Med 2006; 12(4): 395–397, https://doi.org/10.1038/nm1386.
  88. Veltri A., Lang C., Lien W.-H. Concise review: Wnt signaling pathways in skin development and epidermal stem cells. Stem Cells 2018; 36(1): 22–35, https://doi.org/10.1002/stem.2723.
  89. Watt F.M. Stem cell fate and patterning in mammalian epidermis. Curr Opin Genet Dev 2001; 11(4): 410–417, https://doi.org/10.1016/s0959-437x(00)00211-2.
  90. Adaimy L., Chouery E., Megarbane H., Mroueh S., Delague V., Nicolas E., Belguith H., de Mazancourt P., Megarbane A. Mutation in WNT10A is associated with an autosomal recessive ectodermal dysplasia: the odonto-onycho-dermal dysplasia. Am J Hum Genet 2007; 81(4): 821–828, https://doi.org/10.1086/520064.
  91. Liu F., Thirumangalathu S., Gallant N.M., Yang S.H., Stoick-Cooper C.L., Reddy S.T., Andl T., Taketo M.M., Dlugosz A.A., Moon R.T., Barlow L.A., Millar S.E. Wnt-beta-catenin signaling initiates taste papilla development. Nat Genet 2007; 39(1): 106–112, https://doi.org/10.1038/ng1932.
  92. Enshell-Seijffers D., Lindon C., Kashiwagi M., Morgan B.A. β-catenin activity in the dermal papilla regulates morphogenesis and regeneration of hair. Dev Cell 2010; 18(4): 633–642, https://doi.org/10.1016/j.devcel.2010.01.016.
  93. Lowry W.E., Blanpain C., Nowak J.A., Guasch G., Lewis L., Fuchs E. Defining the impact of beta-catenin/Tcf transactivation on epithelial stem cells. Genes Dev 2005; 19(13): 1596–1611, https://doi.org/10.1101/gad.1324905.
  94. Van Mater D., Kolligs F.T., Dlugosz A.A., Fearon E.R. Transient activation of beta-catenin signaling in cutaneous keratinocytes is sufficient to trigger the active growth phase of the hair cycle in mice. Genes Dev 2003; 17(10): 1219–1224, https://doi.org/10.1101/gad.1076103.
  95. Yoon J.S., Choi M., Shin C.Y., Paik S.H., Kim K.H., Kwon O. Development of a model for chemotherapy-induced alopecia: profiling of histological changes in human hair follicles after chemotherapy. J Invest Dermatol 2016; 136(3): 584–592, https://doi.org/10.1038/jid.2015.358.
  96. Gilhar A., Etzioni A., Paus R. Alopecia areata. N Engl J Med 2012; 366(16): 1515–1525, https://doi.org/10.1056/nejmra1103442.
  97. MacLean K.J., Tidman M.J. Alopecia areata: more than skin deep. Practitioner 2013; 257(1764): 29–32.
  98. Mitsiadis T., Barrandon O., Rochat A., Barrandon Y., De Bari C. Stem cell niches in mammals. Exp Cell Res 2007; 313(16): 3377–3385, https://doi.org/10.1016/j.yexcr.2007.07.027.
  99. Obernikhin S.S., Yaglova N.V. Spontaneous alopecia areata in offspring of murine dams exposed to immunostimulation in early pregnancy. Fundamental’nye issledovaniya 2013; 12(2): 273–278.
  100. Yaglova N.V., Obernikhin S.S. Inherited alopecia areata in mice as a result of adoptive transfer of in vivo mitogen-activated splenic cells to females during early period of gestation. Bull Exp Biol Med 2015; 159(2): 285–288, https://doi.org/10.1007/s10517-015-2943-4.
  101. Яглова Н.В., Обернихин С.С. Развитие кожи и ее производных у потомства самок мышей, перенесших активацию иммунной системы на ранних сроках бере­мен­ности. Клиническая и экспериментальная морфология 2014; 2(10): 50–57.
  102. Шаповалова Е.Ю., Бойко Т.А., Барановский Ю.Г., Коломоец Т.А., Каракулькина О.А. Пролиферативная и апоптотическая активность клеток разных участков ко­жи у человека в процессе раннего эмбрионального гисто­генеза. Международный научно-исследовательский жур­нал 2015; 7–5(38): 71–74.
  103. Шаповалова Е.Ю., Бойко Т.А., Барановский Ю.Г., Каракулькина О.А. Пренатальные гистогенетические предпосылки региональных различий развития кожи у человека. Морфология 2016; 149(3): 235.


Журнал базах данных

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg

SCImago Journal & Country Rank