Сегодня: 21.01.2025
RU / EN
Последнее обновление: 27.12.2024
Зрительная объектная агнозия при поражениях головного мозга (обзор)

Зрительная объектная агнозия при поражениях головного мозга (обзор)

Г.В. Тихомиров, И.О. Константинова, М.М. Циркова, Н.А. Буланов, В.Н. Григорьева
Ключевые слова: зрительная агнозия; теория двух потоков зрительной информации; стриарная и экстрастриарная кора; объектная агнозия; метод картирования очага поражения.
2019, том 11, номер 1, стр. 46.

Полный текст статьи

html pdf
10434
2949

Нарушения зрительного гнозиса служат одной из возможных причин ограничений жизнедеятельности у больных с поражением головного мозга, однако их распространенность и клиническая значимость в неврологической клинике недооценены. В обзоре дается представление о зрительных объектных агнозиях как проявлении патологии головного мозга.

Изложены современные взгляды на нейроанатомические и нейрофизиологические основы зрительного объектного гнозиса. Описаны клинические варианты зрительных объектных агнозий, их морфологические субстраты, особенности нейропсихологической диагностики и основные подходы к реабилитации больных.

Представлены уникальные возможности компьютерных технологий для реализации принципов физических измерений, цифрового картирования и контролируемой оптимизации в диагностико-реабилитационном процессе и, в частности, при зрительной объектной агнозии.

Подчеркнута необходимость разработки стандартизированных валидных методик диагностики зрительных объектных агнозий для совершенствования путей их коррекции в неврологической практике.

  1. Лурия А.Р. Основы нейропсихологии. М: Изда­тельский центр «Академия»; 2013.
  2. Zihl J. Rehabilitation of visual disorders after brain injury. Psychology Press; 2010, https://doi.org/10.4324/9780203843253.
  3. Cooper S.A. Higher visual function: hats, wives and disconnections. Pract Neurol 2012; 12(6): 349–357, https://doi.org/10.1136/practneurol-2011-000153.
  4. Fundamental neuroscience. Squire L., Berg D., Bloom F.E., du Lac S., Ghosh A., Spitzer N.C. (editors). Elsevier; 2012.
  5. Haque S., Vaphiades M.S., Lueck C.J. The visual agnosias and related disorders. J Neuroophthalmol 2018; 38(3): 379–392, https://doi.org/10.1097/wno.0000000000000556.
  6. Martinaud O. Visual agnosia and focal brain injury. Rev Neurol (Paris) 2017; 173(7–8): 451–460, https://doi.org/10.1016/j.neurol.2017.07.009.
  7. Hanna K.L., Rowe F. Clinical versus evidence-based rehabilitation options for post-stroke visual impairment. Neuroophthalmology 2017; 41(6): 297–305, https://doi.org/10.1080/01658107.2017.1337159.
  8. Heutink J., Indorf D.L., Cordes C. The neuropsychological rehabilitation of visual agnosia and Balint’s syndrome. Neuropsychol Rehabil 2018; 1–20, https://doi.org/10.1080/09602011.2017.1422272.
  9. Barton J.J.S. Objects and faces, faces and objects…. Cogn Neuropsychol 2018; 35(1–2): 90–93, https://doi.org/10.1080/02643294.2017.1414693.
  10. Barton J.J. Disorders of higher visual processing. Handb Clin Neurol 2011; 102: 223–261, https://doi.org/10.1016/b978-0-444-52903-9.00015-7.
  11. Cavina-Pratesi C., Large M.E., Milner A.D. Visual processing of words in a patient with visual form agnosia: a behavioural and fMRI study. Cortex 2015; 64: 29–46, https://doi.org/10.1016/j.cortex.2014.09.017.
  12. Unzueta-Arce J., García-García R., Ladera-Fernández V., Perea-Bartolomé M.V., Mora-Simón S., Cacho-Gutiérrez J. Visual form-processing deficits: a global clinical classification. Neurologia 2014; 29(8): 482–489, https://doi.org/10.1016/j.nrleng.2012.03.023.
  13. Chechlacz M., Novick A., Rotshtein P., Bickerton W.L., Humphreys G.W., Demeyere N. The neural substrates of drawing: a voxel-based morphometry analysis of constructional, hierarchical, and spatial representation deficits. J Cogn Neurosci 2014; 26(12): 2701–2015, https://doi.org/10.1162/jocn_a_00664.
  14. Baars B.J., Gage N.M. Fundamentals of cognitive neuroscience: a beginner’s guide. Elsevier; 2013.
  15. Kolb B., Whishaw I.Q. Fundamentals of human neuropsychology. New York: Worth; 2015.
  16. Humphreys G. A reader in visual agnosia. Routledge; 2016, https://doi.org/10.4324/9781315668444.
  17. Strappini F., Pelli D.G., Di Pace E., Martelli M. Agnosic vision is like peripheral vision, which is limited by crowding. Cortex 2017; 89: 135–155, https://doi.org/10.1016/j.cortex.2017.01.012.
  18. Ptak R., Lazeyras F., Di Pietro M., Schnider A., Simon S.R. Visual object agnosia is associated with a breakdown of object-selective responses in the lateral occipital cortex. Neuropsychologia 2014; 60: 10–20, https://doi.org/10.1016/j.neuropsychologia.2014.05.009.
  19. Searle J.A., Hamm J.P. Mental rotation: an examination of assumptions. Wiley Interdiscip Rev Cogn Sci 2017; 8(6), https://doi.org/10.1002/wcs.1443.
  20. Angelucci A., Roe A.W., Sereno M.I. Controversial issues in visual cortex mapping: extrastriate cortex between areas V2 and MT in human and nonhuman primates. Vis Neurosci 2015; 32: E025, https://doi.org/10.1017/s0952523815000292.
  21. Kujovic M., Zilles K., Malikovic A., Schleicher A., Mohlberg H., Rottschy C., Eickhoff S.B., Amunts K. Cytoarchitectonic mapping of the human dorsal extrastriate cortex. Brain Struct Funct 2013; 218(1): 157–172, https://doi.org/10.1007/s00429-012-0390-9.
  22. Goodale M.A., Milner A.D. Two visual pathways — where have they taken us and where will they lead in future? Cortex 2018; 98: 283–292, https://doi.org/10.1016/j.cortex.2017.12.002.
  23. Merabet L.B., Mayer D.L., Bauer C.M., Wright D., Kran B.S. Disentangling how the brain is “wired” in cortical (cerebral) visual impairment. Semin Pediatr Neurol 2017; 24(2): 83–91, https://doi.org/10.1016/j.spen.2017.04.005.
  24. Goodale M.A. Separate visual systems for perception and action: a framework for understanding cortical visual impairment. Dev Med Child Neurol 2013; 55(Suppl 4): 9–12, https://doi.org/10.1111/dmcn.12299.
  25. Goodale M.A. How (and why) the visual control of action differs from visual perception. Proc Biol Sci 2014; 281(1785): 20140337, https://doi.org/10.1098/rspb.2014.0337.
  26. Foley R.T., Whitwell R.L., Goodale M.A. The two-visual-systems hypothesis and the perspectival features of visual experience. Conscious Cogn 2015; 35: 225–233, https://doi.org/10.1016/j.concog.2015.03.005.
  27. Rossetti Y., Pisella L., McIntosh R.D. Rise and fall of the two visual systems theory. Ann Phys Rehabil Med 2017; 60(3): 130–140, https://doi.org/10.1016/j.rehab.2017.02.002.
  28. Meichtry J.R., Cazzoli D., Chaves S., von Arx S., Pflugshaupt T., Kalla R., Bassetti C.L., Gutbrod K., Müri R.M. Pure optic ataxia and visual hemiagnosia — extending the dual visual hypothesis. J Neuropsychol 2018; 12(2): 271–290, https://doi.org/10.1111/jnp.12119.
  29. Takahashi E., Ohki K., Kim D.S. Dissociation and convergence of the dorsal and ventral visual working memory streams in the human prefrontal cortex. Neuroimage 2013; 65: 488–498, https://doi.org/10.1016/j.neuroimage.2012.10.002.
  30. Martinaud O., Pouliquen D., Gérardin E., Loubeyre M., Hirsbein D., Hannequin D., Cohen L. Visual agnosia and posterior cerebral artery infarcts: an anatomical-clinical study. PLoS One 2012; 7(1): e30433, https://doi.org/10.1371/journal.pone.0030433.
  31. Ishii K., Koide R., Mamada N., Tamaoka A. Topographical disorientation in a patient with right parahippocampal infarction. Neurol Sci 2017; 38(7): 1329–1332, https://doi.org/10.1007/s10072-017-2925-6.
  32. Rennig J., Cornelsen S., Wilhelm H., Himmelbach M., Karnath H.O. Preserved expert object recognition in a case of visual hemiagnosia. J Cogn Neurosci 2018; 30(2): 131–143, https://doi.org/10.1162/jocn_a_01193.
  33. Cooper S.A., O’Sullivan M. Here, there and everywhere: higher visual function and the dorsal visual stream. Pract Neurol 2016; 16(3): 176–183, https://doi.org/10.1136/practneurol-2015-001168.
  34. De Vries S.M., Heutink J., Melis-Dankers B.J.M., Vrijling A.C.L., Cornelissen F.W., Tucha O. Screening of visual perceptual disorders following acquired brain injury: a Delphi study. Appl Neuropsychol Adult 2018; 25(3): 197–209, https://doi.org/10.1080/23279095.2016.1275636.
  35. Chiu E.-C., Wu W.-C., Chou C.-X., Yu M.-Y., Hung J.-W. Test-retest reliability and minimal detectable change of the test of visual perceptual skills-third edition in patients with stroke. Arch Phys Med Rehabil 2016; 97(11): 1917–1923, https://doi.org/10.1016/j.apmr.2016.04.023.
  36. Величковский Б.М., Соловьев В.Д. Компьютеры, мозг, познание: успехи когнитивных наук. М: Наука; 2008. 293 с.
  37. Morrison G.E., Simone C.M., Ng N.F., Hardy J.L. Reliability and validity of the NeuroCognitive Performance Test, a web-based neuropsychological assessment. Front Psychol 2015; 6: 1652, https://doi.org/10.3389/fpsyg.2015.01652.
  38. Hardy J.L., Nelson R.A., Thomason M.E., Sternberg D.A., Katovich K., Farzin F., Scanlon M. Enhancing cognitive abilities with comprehensive training: a large, online, randomized, active-controlled trial. PLoS One 2015; 10(9): e0134467, https://doi.org/10.1371/journal.pone.0134467.
  39. Jiang T. Brainnetome: a new-ome to understand the brain and its disorders. Neuroimage 2013, 80: 263–272, https://doi.org/10.1016/j.neuroimage.2013.04.002.
  40. Feenstra H.E.M., Murre J.M.J., Vermeulen I.E., Kieffer J.M., Schagen S.B. Reliability and validity of a self-administered tool for online neuropsychological testing: the Amsterdam Cognition Scan. J Clin Exp Neuropsychol 2018 40(4): 253–273, https://doi.org/10.1080/13803395.2017.1339017.
  41. Fliessbach K., Hoppe C., Schlegel U., Elger C.E., Helmstaedter C. NeuroCogFX — a computer-based neuropsychological assessment battery for the follow-up examination of neurological patients. Fortschr Neurol Psychiatr 2006; 74(11): 643–650, https://doi.org/10.1055/s-2006-932162.
  42. Guimarães B., Ribeiro J., Cruz B., Ferreira A., Alves H., Cruz-Correia R., Madeira M.D., Ferreira M.A. Performance equivalency between computer-based and traditional pen-and-paper assessment: a case study in clinical anatomy. Anat Sci Educ 2018; 11(2): 124–136, https://doi.org/10.1002/ase.1720.
  43. Segalowitz S.J., Mahaney P., Santesso D.L., MacGregor L., Dywan J., Willer B. Retest reliability in adolescents of a computerized neuropsychological battery used to assess recovery from concussion. NeuroRehabilitation 2007; 22(3): 243–251.
  44. Tsotsos L.E., Roggeveen A.B., Sekuler A.B., Vrkljan B.H., Bennett P.J. The effects of practice in a useful field of view task on driving performance. Journal of Vision 2010; 10(7): 152–152, https://doi.org/10.1167/10.7.152.
  45. Crabb D.P., Fitzke F.W., Hitchings R.A., Viswanathan A.C. A practical approach to measuring the visual field component of fitness to drive. Br J Ophthalmol 2004; 88(9): 1191–1196, https://doi.org/10.1136/bjo.2003.035949.
  46. Edwards J.D., Vance D.E., Wadley V.G., Cissell G.M., Roenker D.L., Ball K.K. Reliability and validity of useful field of view test scores as administered by personal computer. J Clin Exp Neuropsychol 2005; 27(5): 529–543, https://doi.org/10.1080/13803390490515432.
  47. Tombaugh T.N. TOMM, Test of Memory Malingering. North Tonawanda, NY: Multi-Health Systems; 1996.
  48. Korkman M., Kirk U., Kemp S. NEPSY. A developmental neuropsychological assessment. San Antonio, TX: The Psychological Corporation; 1998.
  49. Hooper H.E. Hooper Visual Organization Test (VOT) manual. Los Angeles, CA: Western Psychological Services; 1983.
  50. Conners C.K. Conners’ Rating Scale manual. North Tonawanda, NY: Multi-Health Systems; 1989.
  51. Greenberg L.M., Kindschi C.L., Corman C.L. TOVA test of variables of attention: clinical guide. St. Paul, MN: TOVA Research Foundation; 1996.
  52. Полевая С.А., Мансурова (Ячмонина) Ю.О., Ве­тю­гов В.В., Федотчев А.И., Парин С.Б. Особенности ког­ни­тивных функций и их вегетативного обеспечения при нарушениях эндогенной опиоидной системы. В кн.: ХХ Международная научно-техническая конференция «Нейро­информатика–2018». М: НИЯУ МИФИ; 2018; 2: 162–170.
  53. Полевая С.А., Парин С.Б., Стромкова Е.Г. Психо­физическое картирование функциональных состояний человека. В кн.: Экспериментальная психология в России: традиции и перспективы. Под ред. Барабанщикова В.А. М: Изд-во «Институт психологии РАН»; 2010; c. 534–538.
  54. Shatil E., Mikulecká J., Bellotti F., Bureš V. Novel television-based cognitive training improves working memory and executive function. PLoS One 2014; 9(7): e101472, https://doi.org/10.1371/journal.pone.0101472.
  55. Bray V.J., Dhillon H.M., Bell M.L., Kabourakis M., Fiero M.H., Yip D., Boyle F., Price M.A., Vardy J.L. Evaluation of a web-based cognitive rehabilitation program in cancer survivors reporting cognitive symptoms after chemotherapy. J Clin Oncol 2017; 35(2): 217–225, https://doi.org/10.1200/jco.2016.67.8201.
  56. Behrmann M., Peterson M.A., Moscovitch M., Suzuki S. Independent representation of parts and the relations between them: evidence from integrative agnosia. J Exp Psychol Hum Percept Perform 2006; 32(5): 1169–1184, https://doi.org/10.1037/0096-1523.32.5.1169.
  57. Полевая С.А., Рунова Е.В., Некрасова М.М., Федо­това И.В., Бахчина А.В., Ковальчук А.В., Шишалов И.С., Парин С.Б. Телеметрические и информационные техно­логии в диагностике функционального состояния спорт­сменов. Современные технологии в медицине 2012; 4(4): 94–98.

Tikhomirov G.V., Konstantinova I.O., Cirkova M.M., Bulanov N.A., Grigoryeva V.N. Visual Object Agnosia in Brain Lesions (Review). Sovremennye tehnologii v medicine 2019; 11(1): 46, https://doi.org/10.17691/stm2019.11.1.05


Журнал базах данных

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg

SCImago Journal & Country Rank