Динамика стресс-активации при повторении стрессогенного воздействия в эксперименте
Цель исследования — анализ динамики стресс-специфичных показателей функционального состояния организма, а именно уровня катехоламинов в плазме крови и спектральных показателей вариабельности сердечного ритма (ВСР), при повторяющемся иммобилизационном стрессе для определения эффектов габитуации.
Материалы и методы. Перед началом эксперимента крыс (Long-Evans, n=6) катетеризировали в яремную вену. Для иммобилизации животных мягко фиксировали в специальном гамаке по 30 мин ежедневно в течение пяти дней. В процессе иммобилизации, а также в течение 30 мин до и 60 мин после иммобилизации в условиях свободного поведения в домашней клетке у крыс проводили неинвазивную регистрацию ЭКГ для последующего анализа ВСР на основе спектральных показателей ритмограмм. В первый, третий и пятый экспериментальные дни у крыс брали пробы крови за 30 мин до (1-й этап), через 5 мин после начала иммобилизации (2-й этап), в конце иммобилизации (3-й этап) и через 30 мин после окончания иммобилизационного периода (4-й этап) для последующего анализа концентрации катехоламинов в плазме крови.
Результаты. Эффекты габитуации к иммобилизации выявлены в динамике уровня катехоламинов в плазме крови, ЧСС и ВСР. Концентрация адреналина и норадреналина увеличивалась статистически значимо в период иммобилизации в первый экспериментальный день и не имела достоверных изменений в последующие дни. ЧСС статистически значимо снижалась на 3-м и 4-м этапах эксперимента (свободное поведение в домашней клетке после иммобилизации) в пятый день и оставалась на исходно высоком уровне в первый и третий дни эксперимента. Общая мощность спектра ВСР статистически значимо уменьшалась в период иммобилизации во все экспериментальные дни. В первый день ВСР оставалась редуцированной до 4-го этапа эксперимента. В третий и пятый дни общая мощность спектра ВСР восстанавливалась после иммобилизации до исходного уровня к 4-му этапу эксперимента.
Заключение. Пятидневное повторение иммобилизационного стресса животных в специальном гамаке, разработанном для их фиксации в электрофизиологических экспериментах, сопровождается габитуацией, что демонстрируют данные динамики уровня катехоламинов в крови и ВСР. Полученные данные показывают, что эффекты габитуации проявляются не только в снижении выраженности стресс-активации, но и в сокращении ее по времени.
- Golbidi S., Frisbee J.C., Laher I. Chronic stress impacts the cardiovascular system: animal models and clinical outcomes. Am J Physiol Heart Circ Physiol 2015; 308(12): H1476–H1498, https://doi.org/10.1152/ajpheart.00859.2014.
- McEwen B.S. Neurobiological and systemic effects of chronic stress. Chronic Stress 2017; 1: 247054701769232, https://doi.org/10.1177/2470547017692328.
- Lucca G., Comim C.M., Valvassori S.S., Pereira J.G., Stertz L., Gavioli E.C., Kapczinski F., Quevedo J. Chronic mild stress paradigm reduces sweet food intake in rats without affecting brain derived neurotrophic factor protein levels. Curr Neurovasc Res 2008; 5(4): 207–213, https://doi.org/10.2174/156720208786413406.
- Rohleder N., Janson J., Sturmbauer S. Mechanisms of habituation versus sensitization of inflammatory responses to repeated acute stress. Psychoneuroendocrinology 2017; 83: 74–75, https://doi.org/10.1016/j.psyneuen.2017.07.439.
- Quaedflieg C.W.E.M., Meyer T., van Ruitenbeek P., Smeets T. Examining habituation and sensitization across repetitive laboratory stress inductions using the MAST. Psychoneuroendocrinology 2017; 77: 175–181, https://doi.org/10.1016/j.psyneuen.2016.12.009.
- Feda D.M., Roemmich J.N. Effect of interpersonal and cognitive stressors on habituation and the utility of heart rate variability to measure habituation. Stress Health 2016; 32(4): 320–327, https://doi.org/10.1002/smi.2618.
- Súilleabháin P.S.Ó., Howard S., Hughes B.M. Openness to experience and adapting to change: cardiovascular stress habituation to change in acute stress exposure. Psychophysiology 2018; 55(5): e13023, https://doi.org/10.1111/psyp.13023.
- Каримова М.Х., Кудрин В.С., Гайнетдинов Р.Р. Оценка содержания катехоламинов в крови у практически здоровых людей. Клиническая лабораторная диагностика 1993; 9(2): 33–35.
- Парин С.Б. Люди и животные в экстремальных ситуациях. Вестник Новосибирского государственного университета. Серия: Психология 2008; 2(2): 118–135.
- Polevaya S.А., Runova Е.V., Nekrasova М.М., Fedotova I.V., Bakhchina А.V., Kovalchuk А.V., Shishalov I.S., Parin S.B. Telemetry and information technologies in diagnosis of sportsmen functional state. Sovremennye tehnologii v medicine 2012; (4): 94.
- Бахчина А.В. Динамика вегетативной регуляции кардиоритма при когнитивных, эмоциональных и физических нагрузках. Автореф. дис. … канд. психол. наук. М; 2014.
- Hollander M., Wolfe D.A., Chicken E. Nonparametric statistical methods. John Wiley & Sons, Inc.; 2015, https://doi.org/10.1002/9781119196037.
- Wilcoxon F. Individual comparisons by ranking methods. Biometrics 1945; 1(6): 80–83, https://doi.org/10.2307/3001968.
- von Borell E., Langbein J., Després G., Hansen S., Leterrier C., Marchant-Forde J., Marchant-Forde R., Minero M., Mohr E., Prunier A., Valance D., Veissier I. Heart rate variability as a measure of autonomic regulation of cardiac activity for assessing stress and welfare in farm animals — a review. Physiol Behav 2007; 92(3): 293–316, https://doi.org/10.1016/j.physbeh.2007.01.007.
- Kuwahara M., Yayou K., Ishii K., Hashimoto S., Tsubone H., Sugano S. Power spectral analysis of heart rate variability as a new method for assessing autonomic activity in the rat. J Electrocardiol 1994; 27(4): 333–337, https://doi.org/10.1016/s0022-0736(05)80272-9.
- Pulopulos M.M., Vanderhasselt M.-A., De Raedt R. Association between changes in heart rate variability during the anticipation of a stressful situation and the stress-induced cortisol response. Psychoneuroendocrinology 2018; 94: 63–71, https://doi.org/10.1016/j.psyneuen.2018.05.004.