Сегодня: 21.01.2025
RU / EN
Последнее обновление: 27.12.2024
Применение феноменологической математической модели для воспроизведения эффекта взаимодействия эндогенных и экзогенных осцилляций при нейробиоуправлении

Применение феноменологической математической модели для воспроизведения эффекта взаимодействия эндогенных и экзогенных осцилляций при нейробиоуправлении

И.В. Нуйдель, A.В. Колосов, В.А. Демарева, В.Г. Яхно
Ключевые слова: нейроинтерфейс; электроэнцефалограмма; ЭЭГ; нейробиоуправление; ритмы мозга; математическая модель; таламокортикальная система.
2019, том 11, номер 1, стр. 103.

Полный текст статьи

html pdf
3068
1853

Цель исследования — оценить возможность применения феноменологической математической модели элементарной таламокортикальной ячейки для описания частотно-временных откликов реальной таламокортикальной системы, а именно различных модуляций альфа-ритма, с воспроизведением на модели динамики сигнала в ходе нейробиоуправления.

Материалы и методы. Экспериментальная часть работы — резонансное нейробиоуправление с двойной обратной связью на базе программно-аппаратного комплекса BioFeedBack2 — проводилась по гибридному протоколу: фон — до/после: 2-минутная запись фоновой вертексной ЭЭГ (активный электрод — Сz, заземляющий и референтный электроды на мочках ушей); cканирование по частоте — 210 с: воздействие импульсным инфракрасным излучением с сальтаторно нарастающей частотой от 8 до 14 Гц (шаг по частоте — 0,1 Гц, шаг по времени — 3 с) и музыкоподобным звуковым сигналом, тональность и громкость которого определяются пиковой амплитудой в спектре текущей ЭЭГ в диапазоне 8–14 Гц. Характеристическое время обратной связи — 10 мс, точность по частоте — 0,2–0,4 Гц. В звуковой сигнал добавлены периодические шумовые импульсы, предъявляемые с частотой, соответствующей фоновой ЧСС.

Для расчетов использована ранее разработанная феноменологическая модель элементарной таламокортикальной ячейки, включающая в себя взаимодействующие модули, соответствующие таким нейронным модулям мозга, как таламус, кора и ретикулярные ядра таламуса.

Результаты и обсуждение. На феноменологической математической модели элементарной таламокортикальной ячейки получены частотно-временные отклики модельного сигнала, повторяющего частотное поведение реального сигнала ЭЭГ. Модель воспроизводит эффект изменения базового альфа-ритма внешним воздействием, для которого известны параметры таламокортикальной системы. В дальнейшем эта информация позволит усовершенствовать существующие процедуры биоуправления с обратной связью, способствующие активизации познавательной деятельности человека, так как известно, что путем проведения комплекса тренировок удается управлять частотой альфа-ритма (нейробиоуправление) таким образом, что у испытуемых по объек­тивным показателям психофизической диагностики происходит усиление когнитивной деятельности, а по их субъективным оценкам — улучшается самочувствие в целом.

Заключение. В работе продемонстрирован нейроинформационный подход к персонализированному управлению ритмами мозга: на феноменологической модели таламокортикальной ячейки удается воспроизводить индивидуальные особенности сложной системы обработки информации.

  1. Федотчев А.И., О Сан Чжун, Бондарь А.Т., Семе­нов В.С. Современные возможности и подходы к акти­визации когнитивной деятельности и процессов обучения у че­ловека. Пущино: ИБК РАН; 2017.
  2. Hammond D.C. What is neurofeedback: an update. J Neurother 2011; 15(4): 305–336, https://doi.org/10.1080/10874208.2011.623090.
  3. Miranda R.A., Casebeer W.D., Hein A.M., Judy J.W., Krotkov E.P., Laabs T.L., Manzo J.E., Pankratz K.G., Pratt G.A., Sanchez J.C., Weber D.J., Wheeler T.L., Ling G.S. DARPA-funded efforts in the development of novel brain–computer interface technologies. J Neurosci Methods 2015; 244: 52–67, https://doi.org/10.1016/j.jneumeth.2014.07.019.
  4. Fedotchev А.I., Parin S.B., Polevaya S.A., Velikova S.D. Brain-computer interface and neurofeedback technologies: current state, problems and clinical prospects (review). Sovremennye tehnologii v medicine 2017; 9(1): 175, https://doi.org/10.17691/stm2017.9.1.22.
  5. Федотчев А.И., Бондарь А.Т., Бахчина А.В., Па­рин С.Б., Полевая С.А., Радченко Г.С.. Музыкально-акус­ти­­ческие воздействия, управляемые биопотенциалами мо­зга, в коррекции неблагоприятных функциональных сос­тоя­ний. Успехи физиологических наук 2016; 47(1): 69–79.
  6. Coulter D.A. Thalamocortical anatomy and physiology. In: Engel J. Jr., Pedley T.A. (editors). Epilepsy: a comprehensive textbook. Philadelphia: Lippincott Williams & Wilkins; 2007; p. 353–366.
  7. Колосов А.В., Нуйдель И.В., Яхно В.Г. Иссле­до­вание динамических режимов в математической модели элементарной таламокортикальной ячейки. Известия выс­ших учебных заведений. Прикладная нелинейная динамика 2016; 24(5): 72–83, https://doi.org/10.18500/0869-6632-2016-24-5-72-83.
  8. Bondar A., Shubina L. Nonlinear reactions of limbic structure electrical activity in response to rhythmical photostimulation in guinea pigs. Brain Res Bull 2018; 143: 73–82, https://doi.org/10.1016/j.brainresbull.2018.10.002.
  9. Fedotchev A.I., Bondar A.T., Bakhchina A.V., Grigorieva V.N., Katayev A.A., Parin S.B., Radchenko G.S., Polevaya S.A. Transformation of patient’s EEG oscillators into music-like signals for correction of stress-induced functional states. Sovremennye tehnologii v medicine 2016; 8(1): 93–98, https://doi.org/10.17691/stm2016.8.1.12.
Nuidel I.V., Kolosov A.V., Demareva V.A., Yakhno V.G. Using a Phenomenological Mathematical Model to Reproduce the Interaction of Endogenous and Exogenous Oscillations under Neurocontrol. Sovremennye tehnologii v medicine 2019; 11(1): 103, https://doi.org/10.17691/stm2019.11.1.12


Журнал базах данных

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg

SCImago Journal & Country Rank