Использование эллипсометрического аналитического комплекса при измерении вблизи поверхностного плазмонного резонанса в диагностике колоректального рака
Цель исследования — оценить возможности использования эллипсометрического аналитического комплекса для повышения чувствительности современных малоинвазивных экспрессных оптических методов, основанных на анализе отражения поляризованного света вблизи наблюдаемого поверхностного плазмонного резонанса при полном внутреннем отражении в диагностике колоректального рака у пациентов с различной локализацией метастазов.
Материалы и методы. Исследована специфическая высокочувствительная реакция моноклональных антител, иммобилизованных на поверхности чипов, с опухолевой М2-пируваткиназой сыворотки крови условно здоровых лиц без онкологической патологии и патологии внутренних органов (n=19) и больных колоректальным раком различных локализаций (n=49), разделенных на три подгруппы в зависимости от локализации метастазов: 1-я подгруппа — местно-регионарный колоректальный рак (n=15); 2-я — только печеночные метастазы (n=18); 3-я — внепеченочные метастазы (n=16). Определение концентраций опухолевой М2-пируваткиназы происходило в процессе ее взаимодействия с моноклональными антителами. Детекцию реакции осуществляли путем измерения изменений показателя преломления приповерхностной области чипа с помощью высокочувствительных оптических систем, основанных на измерении состояния поляризации света вблизи наблюдения поверхностного плазмонного резонанса.
Результаты. Взаимодействие опухолевой М2-пируваткиназы сыворотки крови с антителами приводит к заметному изменению оптических свойств среды, что говорит о высокой специфичности данной реакции. Обнаружены достоверные различия равновесных величин уровня опухолевой М2-пируваткиназы в сыворотке крови, превышающие 20-кратный уровень, как в группах здоровых лиц и пациентов, больных колоректальным раком, так и в группах больных колоректальным раком с метастазами различных локализаций. Диагностическая эффективность оптических методов в определении опухолевой М2-пируваткиназы сыворотки крови при выявлении колоректального рака подтверждена данными последующего ROC-анализа.
Заключение. Полученные результаты перспективны для разработки методов ранней диагностики колоректального рака, выявления метастазов различных локализаций, в перспективе — рецидивов заболевания, а также для контроля за качеством проводимого лечения.
- Федоров В.Э., Поделякин К.А. Эпидемиологические аспекты колоректального рака. Медицинский альманах 2017; 4: 145–148, https://doi.org/10.21145/2499-9954-2017-4-145-148.
- Pathak S., Pandanaboyana S., Daniels I., Smart N., Prasad K.R. Obesity and colorectal liver metastases: mechanisms and management. Surg Oncol 2016; 25(3): 246–251, https://doi.org/10.1016/j.suronc.2016.05.021.
- Stagnitti A., Barchetti F., Barchetti G., Pasqualitto E., Sartori A., Glorioso M., Gigli S., Buonocore V., Monti M.L., Marini A., Mele C., Stagnitti F., Laghi A. Preoperative staging of colorectal cancer using virtual colonoscopy: correlation with surgical results. Eur Rev Med Pharmacol Sci 2015; 19(9): 1645–1651.
- Meyerhardt J.A., Mangu P.B., Flynn P.J., Korde L., Loprinzi C.L., Minsky B.D., Petrelli N.J., Ryan K., Schrag D.H., Wong S.L., Benson A.B. 3rd.; American Society of Clinical Oncology. Follow-up care, surveillance protocol, and secondary prevention measures for survivors of colorectal cancer: American Society of Clinical Oncology clinical practice guideline endorsement. J Clin Oncol 2013; 31(35): 4465–4470, https://doi.org/10.1200/jco.2013.50.7442.
- Hamilton T.D., Leugner D., Kopciuk K., Dixon E., Sutherland F.R., Bathe O.F. Identification of prognostic inflammatory factors in colorectal liver metastases. BMC Cancer 2014; 14: 542, https://doi.org/10.1186/1471-2407-14-542.
- Sasaki K., Andreatos N., Margonis G.A., He J., Weiss M., Johnston F., Wolfgang C., Antoniou E., Pikoulis E., Pawlik T.M. The prognostic implications of primary colorectal tumor location on recurrence and overall survival in patients undergoing resection for colorectal liver metastasis. J Surg Oncol 2016; 114(7): 803–809, https://doi.org/10.1002/jso.24425.
- Mavros M.N., Hyder O., Pulitano C., Aldrighetti L., Pawlik T.M. Survival of patients operated for colorectal liver metastases and concomitant extra-hepatic disease: external validation of a prognostic model. J Surg Oncol 2013; 107(5); 481–485, https://doi.org/10.1002/jso.23260.
- Kim C.W., Kim J.I., Park S.H., Han J.Y., Kim J.K., Chung K.W., Sun H.S. Usefulness of plasma tumor M2-pyruvate kinase in the diagnosis of gastrointestinal cancer. Korean J Gastroenterol 2003; 42(5): 387–393.
- Dombrauckas J.D., Santarsiero B.D., Mesecar A.D. Structural basis for tumor pyruvate kinase M2 allosteric regulation and catalysis. Biochemistry 2005; 44(27): 9417–9429, https://doi.org/10.1021/bi0474923.
- Zaccaro C., Saracino I.M., Fiorini G., Figura N., Holton J., Castelli V., Pesci V., Gatta L., Vaira D. Power of screening tests for colorectal cancer enhanced by high levels of M2-PK in addition to FOBT. Intern Emerg Med 2017; 12(3): 333–339, https://doi.org/10.1007/s11739-017-1610-3.
- Guan M., Tong Y., Guan M., Liu X., Wang M., Niu R., Zhang F., Dong D., Shao J., Zhou Y. Lapatinib inhibits breast cancer cell proliferation by influencing PKM2 expression. Technol Cancer Res Treat 2018; 17: 1533034617749418, https://doi.org/10.1177/1533034617749418.
- Tee S.S., Park J.M., Hurd R.E., Brimacombe K.R., Boxer M.B., Massoud T.F., Rutt B.K., Spielman D.M. PKM2 activation sensitizes cancer cells to growth inhibition by 2-deoxy-D-glucose. Oncotarget 2017; 8(53): 90959–90968, https://doi.org/10.18632/oncotarget.19630.
- Krones A., Jungermann K., Kietzmann T. Cross-talk between the signals hypoxia and glucose at the glucose response element of the L-type pyruvate kinase gene. Endocrinology 2001; 142(6): 2707–2718, https://doi.org/10.1210/endo.142.6.8200.
- Fung K.Y., Tabor B., Buckley M.J., Priebe I.K., Purins L., Pompeia C., Brierley G.V., Lockett T., Gibbs P., Tie J., McMurrick P., Moore J., Ruszkiewicz A., Nice E., Adams T.E., Burgess A., Cosgrove L.J. Blood-based protein biomarker panel for the detection of colorectal cancer. PLoS One 2015; 10(3): e0120425, https://doi.org/10.1371/journal.pone.0120425.
- Jenkins C.A., Lewis P.D., Dunstan P.R., Harris D.A. Role of Raman spectroscopy and surface enhanced Raman spectroscopy in colorectal cancer. World J Gastrointest Oncol 2016; 8(5): 427–438, https://doi.org/10.4251/wjgo.v8.i5.427.
- Sankiewicz A., Lukaszewski Z., Trojanowska K., Gorodkiewicz E. Determination of collagen type IV by Surface Plasmon Resonance Imaging using a specific biosensor. Anal Biochem 2016; 515: 40–46, https://doi.org/10.1016/j.ab.2016.10.002.
- Jain R., Rawat A., Verma B., Markiewski M.M., Weidanz J.A. Antitumor activity of a monoclonal antibody targeting major histocompatibility complex class I-Her2 peptide complexes. J Natl Cancer Inst 2013; 105(3): 202–218, https://doi.org/10.1093/jnci/djs521.
- Kang Y.R., Byun J.S., Kim T.J., Park H.G., Park J.C., Barange N., Nam K.H., Kim Y.D. Monitoring of the binding between EGFR protein and EGFR aptamer using in-situ total internal reflection ellipsometry. J Nanosci Nanotechnol 2016; 16(6): 6445–6449, https://doi.org/10.1166/jnn.2016.12123.
- Loitsch S.M., Shastri Y., Stein J. Stool test for colorectal cancer screening — it’s time to move! Clin Lab 2008; 54(11–12): 473–484.
- Jonkheijm P., Weinrich D., Schröder H., Niemeyer C.M., Waldmann H. Chemical strategies for generating protein biochips. Angew Chem Int Ed Engl 2008; 47(50): 9618–9647, https://doi.org/10.1002/anie.200801711.
- Рыхлицкий С.В., Кручинин В.Н., Швец В.А., Спесивцев Е.В., Прокопьев В.Ю. Спектральный плазмон-эллипсометрический комплекс ЭЛЛИПС-СПЭК. Приборы и техника эксперимента 2013; 1: 137–138, https://doi.org/10.7868/s0032816212060092.
- Kikawada M., Ono A., Inami W., Kawata Y. Plasmon-enhanced autofluorescence imaging of organelles in label-free cells by deep-ultraviolet excitation. Anal Chem 2016; 88(2): 1407–1411, https://doi.org/10.1021/acs.analchem.5b04060.
- Handbook of ellipsometry. Tompkins H.G., Irene E.A. (editors). Springer Berlin Heidelberg; 2005; 789 p., https://doi.org/10.1007/3-540-27488-x.
- Bye W.A., Nguyen T.M., Parker C.E., Jairath V., East J.E. Strategies for detecting colon cancer in patients with inflammatory bowel disease. Cochrane Database Syst Rev 2017; 9: CD000279, https://doi.org/10.1002/14651858.cd000279.pub4.
- Chekulayev V., Mado K., Shevchuk I., Koit A., Kaldma A., Klepinin A., Timohhina N., Tepp K., Kandashvili M., Ounpuu L., Heck K., Truu L., Planken A., Valvere V., Kaambre T. Metabolic remodeling in human colorectal cancer and surrounding tissues: alterations in regulation of mitochondrial respiration and metabolic fluxes. Biochem Biophys Rep 2015; 4: 111–125, https://doi.org/10.1016/j.bbrep.2015.08.020.
- Meng W., Zhu H.H., Xu Z.F., Cai S.R., Dong Q., Pan Q.R., Zheng S., Zhang S.Z. Serum M2-pyruvate kinase: a promising non-invasive biomarker for colorectal cancer mass screening. World J Gastrointest Oncol 2012; 4(6): 145–151, https://doi.org/10.4251/wjgo.v4.i6.145.
- Abdullah M., Rani A.A., Simadibrata M., Fauzi A., Syam A.F. The value of fecal tumor M2 pyruvate kinase as a diagnostic tool for colorectal cancer screening. Acta Med Indones 2012; 44(2): 94–99.
- Parente F., Marino B., Ilardo A., Fracasso P., Zullo A., Hassan C., Moretti R., Cremaschini M., Ardizzoia A., Saracino I., Perna F., Vaira D. A combination of faecal tests for the detection of colon cancer: a new strategy for an appropriate selection of referrals to colonoscopy? A prospective multicentre Italian study. Eur J Gastroenterol Hepatol 2012; 24(10): 1145–1152, https://doi.org/10.1097/meg.0b013e328355cc79.
- Haug U., Rothenbacher D., Wente M.N., Seiler C.M., Stegmaier C., Brenner H. Tumour M2-PK as a stool marker for colorectal cancer: comparative analysis in a large sample of unselected older adults vs colorectal cancer patients. Br J Cancer 2007; 96(9): 1329–1334, https://doi.org/10.1038/sj.bjc.6603712.