Сегодня: 27.12.2024
RU / EN
Последнее обновление: 30.10.2024
Органоминеральное взаимодействие биомиметических материалов с твердыми тканями зуба

Органоминеральное взаимодействие биомиметических материалов с твердыми тканями зуба

П.В. Середин, О.А. Успенская, Д.Л. Голощапов, И.Ю. Ипполитов, Jitraporn (Pimm) Vongsvivut, Ю.А. Ипполитов
Ключевые слова: биомиметические материалы; нативная твердая ткань зуба человека; ИК-микроспектроскопия; синхротронное излучение.
2020, том 12, номер 1, стр. 43.

Полный текст статьи

html pdf
1595
1724

Цель исследования — оценить интеграцию с нативными твердыми тканями зуба человека нового поколения биомиметических материалов, воспроизводящих минералорганический комплекс эмали и дентина, с использованием для многомерной визуализации и анализа ИК-микроспектроскопии.

Материалы и методы. Определение условий возникновения устойчивой интеграции на границе биомиметический материал–естественная твердая ткань производилось с применением биокомпозиционной буферной системы, включающей нанокристаллический карбонат-замещенный гидроксиапатит кальция, соответствующий по совокупному ряду характеристик апатиту эмали и дентина человека, и ряд аминокислот, присутствующих в составе органического матрикса эмали и дентина: L-гистидин, L-лизина гидрохлорид, L-аргинина гидрохлорид и гиалуроновую кислоту. Готовые образцы были изучены методом ИК-микроспектроскопии с привлечением оборудования канала ИК-микроспектроскопии (IRM) (Австралийский синхротрон, Мельбурн, Австралия).

Результаты. На основе ИК-картирования интенсивности конкретной функциональной молекулярной группы с использованием синхротронного излучения выявлены и визуализированы характеристические особенности биомиметического переходного слоя в межфазной области эмаль–стоматологический материал и определено расположение функциональных групп, отвечающих процессам интеграции биомиметического композита.

  1. Rohr N., Fischer J. Tooth surface treatment strategies for adhesive cementation. J Adv Prosthodont 2017; 9(2): 85–92, https://doi.org/10.4047/jap.2017.9.2.85.
  2. Pereira C.N de B., Daleprane B., Miranda G.L.P. de, Magalhães C.S. de, Moreira A.N. Ultramorphology of pre-treated adhesive interfaces between self-adhesive resin cement and tooth structures. Revista de Odontologia da UNESP 2017; 46(5): 249–254, https://doi.org/10.1590/1807-2577.04917.
  3. Temel U.B., Van Ende A., Van Meerbeek B., Ermis R.B. Bond strength and cement-tooth interfacial characterization of self-adhesive composite cements. Am J Dent 2017; 30(4): 205–211.
  4. Watson T.F., Atmeh A.R., Sajini S., Cook R.J., Festy F. Present and future of glass-ionomers and calcium-silicate cements as bioactive materials in dentistry: biophotonics-based interfacial analyses in health and disease. Dent Mater 2014; 30(1): 50–61, https://doi.org/10.1016/j.dental.2013.08.202.
  5. Pontes D.G., Araujo C.T., Prieto L.T., de Oliveira D.C., Coppini E.K., Dias C.T., Paulillo L.A. Nanoleakage of fiber posts luted with different adhesive strategies and the effect of chlorhexidine on the interface of dentin and self-adhesive cements. Gen Dent 2015; 63(3): 31–37.
  6. Development, function and evolution of teeth. Edited by Teaford M.F., Smith M.M., Ferguson M.W.J. Cambridge University Press; 2000, https://doi.org/10.1017/cbo9780511542626.
  7. Dorozhkin S. Hydroxyapatite and other calcium orthophosphates: bioceramics, coatings and dental applications. Nova Science Publishers, Inc New York; 2017; 462 p.
  8. Uskoković V. Biomineralization and biomimicry of tooth enamel. In: Non-metallic biomaterials for tooth repair and replacement. Elsevier; 2013; p. 20–44, https://doi.org/10.1533/9780857096432.1.20.
  9. Niu L., Zhang W., Pashley D.H., Breschi L., Mao J., Chen J., Tay F.R. Biomimetic remineralization of dentin. Dent Mater 2014; 30(1): 77–96, https://doi.org/10.1016/j.dental.2013.07.013.
  10. Cao C., Mei M., Li Q., Lo E., Chu C. Methods for biomimetic mineralisation of human enamel: a systematic review. Materials 2015; 8(6): 2873–2886, https://doi.org/10.3390/ma8062873.
  11. Chen L., Yuan H., Tang B., Liang K., Li J. Biomimetic remineralization of human enamel in the presence of polyamidoamine dendrimers in vitro. Caries Res 2015; 49(3): 282–290, https://doi.org/10.1159/000375376.
  12. Seredin P.V., Goloshchapov D.L., Gushchin M.S., Ippolitov Y.A., Prutskij T. The importance of the biomimetic composites components for recreating the optical properties and molecular composition of intact dental tissues. Journal of Physics: Conference Series 2017; 917(4): 042019, https://doi.org/10.1088/1742-6596/917/4/042019.
  13. Xia Z. Biomimetic principles and design of advanced engineering materials. John Wiley & Sons; 2016; 321 p., https://doi.org/10.1002/9781118926253.
  14. Dorozhkin S. Self-setting calcium orthophosphate formulations: cements, concretes, pastes and putties. International Journal of Materials and Chemistry 2012; 1(1): 1–48, https://doi.org/10.5923/j.ijmc.20110101.01.
  15. Li H., Gong M., Yang A., Ma J., Li X., Yan Y. Degradable biocomposite of nano calcium-deficient hydroxyapatite-multi(amino acid) copolymer. Int J Nanomedicine 2012; 7: 1287–1295, https://doi.org/10.2147/ijn.s28978.
  16. Ruan Q., Zhang Y., Yang X., Nutt S., Moradian-Oldak J. An amelogenin–chitosan matrix promotes assembly of an enamel-like layer with a dense interface. Acta Biomaterialia 2013; 9(7): 7289–7297, https://doi.org/10.1016/j.actbio.2013.04.004.
  17. Yao Y., Shao H., Zhang Q. Development and characterization of a novel amorphous calcium phosphate/multi (amino acid) copolymer composite for bone repair. J Biomater Tissue Eng 2015; 5(5): 387–390, https://doi.org/10.1166/jbt.2015.1321.
  18. Melo M.A., Weir M.D., Rodrigues L.K., Xu H.H. Novel calcium phosphate nanocomposite with caries-inhibition in a human in situ model. Dental Materials 2013; 29(2): 231–240, https://doi.org/10.1016/j.dental.2012.10.010.
  19. Wu X.T., Mei M.L., Li Q.L., Cao C.Y., Chen J.L., Xia R., Zhang Z.H., Chu C.H. A direct electric field-aided biomimetic mineralization system for inducing the remineralization of dentin collagen matrix. Materials 2015; 8(11): 7889–7899, https://doi.org/10.3390/ma8115433.
  20. Barghamadi H., Atai M., Imani M., Esfandeh M. Effects of nanoparticle size and content on mechanical properties of dental nanocomposites: experimental versus modeling. Iranian Polymer Journal 2015; 24(10): 837–848, https://doi.org/10.1007/s13726-015-0369-5.
  21. Wang H., Xiao Z., Yang J., Lu D., Kishen A., Li Y., Chen Z., Que K., Zhang Q., Deng X., Yang X., Cai Q., Chen N., Cong C., Guan B., Li T., Zhang X. Oriented and ordered biomimetic remineralization of the surface of demineralized dental enamel using HAP@ACP nanoparticles guided by glycine. Sci Rep 2017; 7(1): 40701, https://doi.org/10.1038/srep40701.
  22. Wu X., Zhao X., Li Y., Yang T., Yan X., Wang K. In situ synthesis carbonated hydroxyapatite layers on enamel slices with acidic amino acids by a novel two-step method. Mater Sci Eng C Mater Biol Appl 2015; 54: 150–157, https://doi.org/10.1016/j.msec.2015.05.006.
  23. Aljabo A., Abou Neel E.A., Knowles J.C., Young A.M. Development of dental composites with reactive fillers that promote precipitation of antibacterial-hydroxyapatite layers. Mater Sci Eng C Mater Biol Appl 2016; 60: 285–292, https://doi.org/10.1016/j.msec.2015.11.047.
  24. Wang P., Liu P., Peng H., Luo X., Yuan H., Zhang J., Yan Y. Biocompatibility evaluation of dicalcium phosphate/calcium sulfate/poly (amino acid) composite for orthopedic tissue engineering in vitro and in vivo. J Biomater Sci Polym Ed 2016; 27(11): 1170–1186, https://doi.org/10.1080/09205063.2016.1184123.
  25. Lübke A., Enax J., Wey K., Fabritius H.-O., Raabe D., Epple M. Composites of fluoroapatite and methylmethacrylate-based polymers (PMMA) for biomimetic tooth replacement. Bioinspir Biomim 2016; 11(3): 035001, https://doi.org/10.1088/1748-3190/11/3/035001.
  26. Sa Y., Gao Y., Wang M., Wang T., Feng X., Wang Z., Wang Y., Jiang T. Bioactive calcium phosphate cement with excellent injectability, mineralization capacity and drug-delivery properties for dental biomimetic reconstruction and minimum intervention therapy. RSC Advances 2016, 6(33): 27349–27359, https://doi.org/10.1039/c6ra02488b.
  27. Adachi T., Pezzotti G., Yamamoto T., Ichioka H., Boffelli M., Zhu W., Kanamura N. Vibrational algorithms for quantitative crystallographic analyses of hydroxyapatite-based biomaterials: II, application to decayed human teeth. Anal Bioanal Chem 2015; 407(12): 3343–3356, https://doi.org/10.1007/s00216-015-8539-z.
  28. Mitić Ž., Stolić A., Stojanović S., Najman S., Ignjatović N., Nikolić G., Trajanović M. Instrumental methods and techniques for structural and physicochemical characterization of biomaterials and bone tissue: a review. Mater Sci Eng C Mater Biol Appl 2017; 79: 930–949, https://doi.org/10.1016/j.msec.2017.05.127.
  29. Optical spectroscopy and computational methods in biology and medicine. Edited by Barańska M. Springer, Dordrecht; 2014; 540 p., https://doi.org/10.1007/978-94-007-7832-0.
  30. Hędzelek W., Marcinkowska A., Domka L., Wachowiak R. Infrared spectroscopic identification of chosen dental materials and natural teeth. Acta Phys Pol A 2008; 114(2): 471–484, https://doi.org/10.12693/aphyspola.114.471.
  31. Vongsvivut J., Pérez-Guaita D., Wood B.R., Heraud P., Khambatta K., Hartnell D., Hackett M.J., Tobin M.J. Synchrotron macro ATR-FTIR microspectroscopy for high-resolution chemical mapping of single cells. Analyst 2019; 144(10): 3226–3238, https://doi.org/10.1039/c8an01543k.
  32. Seredin P., Goloshchapov D., Ippolitov Y., Vongsvivut P. Pathology-specific molecular profiles of saliva in patients with multiple dental caries — potential application for predictive, preventive and personalised medical services. EPMA Journal 2018; 9(2): 195–203, https://doi.org/10.1007/s13167-018-0135-9.
  33. Dusevich V., Xu C., Wang Y., Walker M.P., Gorski J.P. Identification of a protein-containing enamel matrix layer which bridges with the dentine–enamel junction of adult human teeth. Arch Oral Biol 2012; 57(12): 1585–1594, https://doi.org/10.1016/j.archoralbio.2012.04.014.
  34. Seredin P.V., Kashkarov V.M., Lukin A.N., Goloshchapov D.L., Al-Zubaidi Asaad Abdulhussein, Ippolitov Y.A., Julian R., Doyle S. Research hydroxyapatite crystals and organic components of hard tooth tissues affected by dental caries using FTIR-microspectroscopy and XRD-microdiffraction. Kondensirovannye sredy i mezhfaznye granitsy 2013; 15(3): 224–231.
  35. Fattibene P., Carosi A., Coste V.D., Sacchetti A., Nucara A., Postorino P., Dore P. A comparative EPR, infrared and Raman study of natural and deproteinated tooth enamel and dentin. Phys Med Biol 2005; 50(6): 1095, https://doi.org/10.1088/0031-9155/50/6/004.
  36. Seredin P., Goloshchapov D., Kashkarov V., Ippolitov Y., Bambery K. The investigations of changes in mineral–organic and carbon–phosphate ratios in the mixed saliva by synchrotron infrared spectroscopy. Results in Physics 2016; 6: 315–321, https://doi.org/10.1016/j.rinp.2016.06.005.
  37. Goloshchapov D.L., Kashkarov V.M., Rumyantseva N.A., Seredin P.V., Lenshin A.S., Agapov B.L., Domashevskaya E.P. Synthesis of nanocrystalline hydroxyapatite by precipitation using hen’s eggshell. Ceramics International 2013; 39(4): 4539–4549, https://doi.org/10.1016/j.ceramint.2012.11.050.
  38. Goloshchapov D.L., Lenshin A.S., Savchenko D.V., Seredin P. Importance of defect nanocrystalline calcium hydroxyapatite characteristics for developing the dental biomimetic composites. Results in Physics 2019; 13: 102158, https://doi.org/10.1016/j.rinp.2019.102158.
  39. Nanci A. Ten cate’s oral histology: development, structure, and function. Elsevier Health Sciences; 2013; 400 p.
  40. Ипполитов Ю.А. Возможность повышения биологической тропности светоотверждаемой бондинговой системы для адгезии твердых тканей зуба к пломбировочному материалу. Бюллетень Волгоградского научного центра РАМН 2010; 4(28): 31–34.
  41. Seredin P., Goloshchapov D., Prutskij T., Ippolitov Y. Phase transformations in a human tooth tissue at the initial stage of caries. PLoS One 2015; 10(4): e0124008, https://doi.org/10.1371/journal.pone.0124008.
  42. Seredin P.V., Goloshchapo D.L., Prutskij T., Ippolitov Yu.A. A simultaneous analysis of microregions of carious dentin by the methods of laser-induced fluorescence and Raman spectromicroscopy. Opt Spectrosc 2018; 125: 803, https://doi.org/10.1134/S0030400X18110267.
  43. Seredin P.V., Goloshchapov D.L., Prutskij T., Ippolitov Yu.A. Fabrication and characterisation of composites materials similar optically and in composition to native dental tissues. Results in Physics 2017; 7: 1086–1094, https://doi.org/10.1016/j.rinp.2017.02.025.
Seredin P.V., Uspenskaya O.A., Goloshchapov D.L., Ippolitov I.Yu., Jitraporn (Pimm) Vongsvivut, Ippolitov Yu.A. Organic-Mineral Interaction between Biomimetic Materials and Hard Dental Tissues. Sovremennye tehnologii v medicine 2020; 12(1): 43, https://doi.org/10.17691/stm2020.12.1.05


Журнал базах данных

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg

SCImago Journal & Country Rank